Short Questions (Question 5 & 6)


Question 5 (4 marks):
Diagram shows a circle with centre O.

Diagram

PR
and QR are tangents to the circle at points P and Q respectively. It is given that the length of minor arc PQ is 4 cm and OR=5α cm.  
Express in terms of α,
(a) the radius, r, of the circle,
(b) the area, A, of the shaded region.

Solution:
(a)
Given sPQ=4   rα=4  r=4α cm

(b)

PR=(5α)2(4α)2PR=9α2PR=3αA= Area of shaded regionA= Area of quadrilateral OPRQArea of sector OPQ=2(Area of  OPR)12r2θ=2[12×3α×4α][12×(4α)2×α]=12α28α=128αα2 cm2


Question 6 (3 marks):
Diagram shows two sectors AOD and BOC of two concentric circles with centre O.

Diagram

The angle subtended at the centre O by the major arc AD is 7α radians and the perimeter of the whole diagram is 50 cm.
Given OB = r cm, OA = 2OB and ∠BOC = 2α, express r in terms of α.

Solution:

Length of major arc AOD=2r×7α=14rαLength of minor arc BOC=r×2α=2rαPerimeter of the whole diagram=50 cm14rα+2rα+r+r=5016rα+2r=508rα+r=25r(8α+1)=25r=258α+1