3.4b Laws of Definite Integrals Posted on May 21, 2020 by Myhometuition 3.4b Laws of Definite Integrals Example: Given that ∫ 3 7 f ( x ) d x = 5 , find the values for each of the following: (a) ∫ 3 7 6 f ( x ) d x (b) ∫ 3 7 [ 3 − f ( x ) ] d x (c) ∫ 7 3 2 f ( x ) d x (d) ∫ 3 4 f ( x ) d x + ∫ 4 5 f ( x ) d x + ∫ 3 7 f ( x ) d x (e) ∫ 3 7 f ( x ) + 7 2 d x Solution: (a) ∫ 3 7 6 f ( x ) d x = 6 ∫ 3 7 f ( x ) d x = 6 ( 5 ) = 30 (b) ∫ 3 7 [ 3 − f ( x ) ] d x = ∫ 3 7 3 d x − ∫ 3 7 f ( x ) d x = [ 3 x ] 3 7 − 5 = [ 3 ( 7 ) − 3 ( 3 ) ] − 5 = 7 (c) ∫ 7 3 2 f ( x ) d x = − ∫ 3 7 2 f ( x ) d x = − 2 ∫ 3 7 f ( x ) d x = − 2 ( 5 ) = − 10 (d) ∫ 3 4 f ( x ) d x + ∫ 4 5 f ( x ) d x + ∫ 3 7 f ( x ) d x = ∫ 3 7 f ( x ) d x = 5 (e) ∫ 3 7 f ( x ) + 7 2 d x = ∫ 3 7 [ 1 2 f ( x ) + 7 2 ] d x = ∫ 3 7 1 2 f ( x ) d x + ∫ 3 7 7 2 d x = 1 2 ∫ 3 7 f ( x ) d x + [ 7 x 2 ] 3 7 = 1 2 ( 5 ) + [ 7 ( 7 ) 2 − 7 ( 3 ) 2 ] = 5 2 + 14 = 16 1 2