(G) Sum to Infinity of Geometric Progressions (Part 2)

(H) Recurring Decimal
Example of recurring decimal:
2 9 = 0.2222222222222..... 8 33 = 0.242424242424..... 41 333 = 0.123123123123.....

Recurring decimal can be changed to fraction using the sum to infinity formula:
S = a 1 r


Example (Change recurring decimal to fraction)
Express each of the following recurring decimals as a fraction in its lowest terms.
(a) 0.8888 ...
(b) 0.171717...
(c) 0.513513513 ….

Solution:
(a)
0.8888 = 0.8 + 0.08 + 0.008 +0.0008 + ….. (recurring decimal)
G P , a = 0.8 , r = 0.08 0.8 = 0.1 S = a 1 r S = 0.8 1 0.1 S = 0.8 0.9 S = 8 9 check using calculator 8 9 = 0.888888....

(b)

0.17171717 …..
= 0.17 + 0.0017 + 0.000017 + 0.00000017 + …..
G P , a = 0.17 , r = 0.0017 0.17 = 0.01 S = a 1 r S = 0.17 1 0.01 = 0.17 0.99 = 17 99 remember to check the answer using calculator

(c)
0.513513513…..
= 0.513 + 0.000513 + 0.000000513 + …..
G P , a = 0.513 , r = 0.00513 0.513 = 0.001 S = a 1 r S = 0.513 1 0.001 = 0.513 0.999 = 513 999 = 19 37