4.10 SPM Practice (Long Questions)


Question 9:
(a) Given  1 s ( 4 2 5 3 )( t 2 5 4 )=( 1 0 0 1 ), find the value of s and of t.

(b) Using matrices, calculate the value of x and of y that satisfy the following matrix equation:
( 4 2 5 3 )( x y )=( 1 2 )


Solution:
(a) 1 s ( t 2 5 4 )= ( 4 2 5 3 ) 1 = 1 ( 4 )( 3 )( 2 )( 5 ) ( 3 2 5 4 ) = 1 2 ( 3 2 5 4 ) s=2, t=3

(b) ( 4 2 5 3 )( x y )=( 1 2 )   ( x y )= 1 2 ( 3 2 5 4 )( 1 2 )   ( x y )= 1 2 ( ( 3 )( 1 )+( 2 )( 2 ) ( 5 )( 1 )+( 4 )( 2 ) )   ( x y )= 1 2 ( 1 3 )   ( x y )=( 1 2 3 2 ) x= 1 2 ,  y= 3 2



Question 10 (5 marks):
During the sport day, students used coupons to buy food and drink. Ali and Larry spent RM31 and RM27 respectively. Ali bought 2 food coupons and 5 drinks coupons while Larry bought 3 coupons and 1 drinks coupon.
Using the matrix method, calculate the price, in RM, of a food coupon and of a drinks coupon.

Solution:
Ali spent RM31. He bought 2 food coupons and 5 drinks coupons.
Larry spent RM27. He bought 3 food coupons and 1 drinks coupons.
x = price of one food coupon
y = price of one drinks coupon

( 2    5 3    1 )( x y )=( 31 27 )             ( x y )= 1 2( 1 )5( 3 ) ( 1    5 3     2 )( 31 27 )             ( x y )= 1 215 ( 1( 31 )+( 5 )( 27 ) 3( 31 )+2( 27 ) )             ( x y )= 1 13 ( 104 39 )             ( x y )=( 8 3 ) x=8 and y=3 Thus, the price for a food coupon is RM8 and the price for drink coupon is RM3.