10.2.1 Circles I, PT3 Focus Practice


10.2.1 Circles I, PT3 Focus Practice

Question 1:
Diagram below shows a circle with centre O.
 
The radius of the circle is 35 cm.
Calculate the length, in cm, of the major arc AB.
(Use π=227)
 
Solution:
Angle of the major arc AB = 360o – 144o= 216o
Length of major arcAB=216o360o×2πr=216o360o×2×227×35=132cm


Question 2:
In diagram below, O is the centre of the circle. SPQ and POQ are straight lines.
 
The length of PO is 8 cm and the length of POQ is 18 cm.
Calculate the length, in cm, of SPT.

Solution
:
Radius = 18 – 8 = 10 cm
PT2 = 102 – 82
  = 100 – 64
= 36
PT = 6 cm
Length of SPT = 6 + 6
= 12 cm


Question 3:
Diagram below shows two circles. The bigger circle has a radius of 14 cm with its centre at O.
The smaller circle passes through O and touches the bigger circle.
 
Calculate the area of the shaded region.
(Use π=227)
 
Solution:
Area of bigger circle=πR2=227×142Radius, r of smaller circle=12×14=7 cmArea of smaller circle=πr2=227×72Area of shaded region=(227×142)(227×72)=616154=462 cm2
 

Question 4:
Diagram below shows two sectors. ABCD is a quadrant and BED is an arc of a circle with centre C.

Calculate the area of the shaded region, in cm2.
(Use π=227)

Solution
:
The area of sector CBED=60o360o×πr2=60o360o×227×142=10223 cm2

The area of quadrant ABCD=14×πr2=14×227×142=154 cm2


Area of the shaded region=15410223=5113 cm2


Question 5:
Diagram below shows a square KLMN. KPN is a semicircle with centre O.

Calculate the perimeter, in cm, of the shaded region.
(Use π=227)

Solution
:
KO=ON=OP=7 cmPN=72+72=98=9.90 cmArc length KP=14×2×227×7=11 cm

Perimeter of the shaded region
= KL + LM + MN + NP + Arc length PK
= 14 + 14 +14 + 9.90 + 11
= 62.90 cm