5.6a Solving Trigonometric Equation (Basic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx)


5.6 Simple Trigonometric Equations

Steps to solve simple trigonometric equation:
(1) Determine the range of values of the required angles.
(2) Find a basic angle by using calculator.
(3) Determine the quadrants the angle should be.
(4) Determine the values of angles in those quadrants.



(A) Solving Trigonometric Equation (Basic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx)

Example:
Find all the values of θ  for 0° < θ  < 360° that satisfy each of the following trigonometric equations.
(a) sin θ = 0.6137
(b) cos θ = 0.2377
(c) tan θ = 2.7825
(d) sin θ = -0.8537
(e) sin 2θ = 0.5293

Solution:
(a)
sin 
θ = 0.6137
basic angle = sinˉ¹ 0.6137 = 37.86°
θ = 37.86°, 180°-37.86°
θ = 37.86°, 142.14°

(b)
cos θ  = 0.2377
basic angle = cosˉ¹ 0.2377 = 76.25°
θ = 76.25°, 360° – 76.25°
θ = 76.25°, 283.75°

(c)
tan θ  = 2.7825
basic angle = tanˉ¹ 2.7825 = 70.23°
θ = 70.23°, 180° + 70.23°
θ = 70.23°, 250.23°

(d)
sin 
θ = -0.8537
basic angle = sinˉ¹ 0.8537 = 58.62°
θ = 180° + 58.62°, 360° – 58.62°
θ = 238.62°, 301.38°
 

(e)
sin 2
θ = 0.5293
basic angle = 31.96°
0° < θ  < 360°
0° < 2θ  < 720°
2θ = 31.96°, 180° – 31.96°, 360° + 31.96°, 360° + 180° – 31.96°
2θ = 31.96°, 148.04°, 391.96°, 508.04°
θ = 15.98°, 74.02°, 195.98°, 254.02°

Short Question 9 & 10


Question 9:
Given that sin θ = 3 5 , where θ is an acute angle, without using tables or a calculator, find the values of
(a) sin (180º + θ),
(b) cos (180º – θ),
(c) tan (360º + θ).

Solution:
(a)


sin θ = 3 5 cos θ = 4 5 tan θ = 3 4

sin (180º + θ)
= sin 180º cos θ + cos 180º sin θ
= (0) cos θ + (– 1) sin θ
= – sin θ
= 3 5

(b)
cos (180º – θ)
= cos 180º cos θ + sin 180º sin θ
= (– 1) cos θ + (0) sin θ
= – cos θ
4 5

(c)
tan ( 360 + θ ) = tan 360 + tan θ 1 tan 360 tan θ = 0 + tan θ 1 ( 0 ) ( tan θ ) = tan θ = 3 4



Question 10:
Prove each of the following trigonometric identities.
(a) cot2 x – cot2 x cos2x = cos2 x
(b) sec x sec x cos x = cos e c 2 x

Solution:
(a)
LHS: cot 2 x cot 2 x cos 2 x = cot 2 x ( 1 cos 2 x ) = cot 2 x ( s i n 2 x ) = cos 2 x s i n 2 x ( s i n 2 x ) = cos 2 x (RHS)


(b)
LHS: sec x sec x cos x = 1 cos x 1 cos x cos x = 1 cos x 1 cos x cos 2 x cos x = 1 cos x 1 cos 2 x cos x = 1 cos x × cos x 1 cos 2 x = 1 1 cos 2 x = 1 s i n 2 x = cos e c 2 x (RHS)

5.1 Positive and Negative Angles

5.1 Positive and Negative Angles
1. Positive angles are angles measure in an anticlockwise rotate from the positive x-axis about the origin, O.

2. Negative angles are angles measured in a clockwise rotation from the positive x-axis about the origin O.


3. One complete revolution is 360° or 2π radians.


Example:
Show each of the following angles on a separate diagram and state the quadrant in which the angle is situated.
(a) 410°
(b) 890°
(c) 22 9 π radians  
(d) 10 3 π radians
(e) –60o
(f) –500°
(g)3 1 4 π radians

Solution:
(a)
410° = 360° + 50°
Based on the above circular diagram, the positive angle of 410° is in the first quadrant.


(b)
890° = 720° + 170°
Based on the above circular diagram, the positive angle of 890° is in the second quadrant.


(c)

22 9 π rad = ( 2 π + 4 9 π ) rad = 360 o + 80 o
Based on the above circular diagram, the positive angle of 22 9 π radians  is in the first quadrant.


(d)
10 3 π rad = ( 3 π + 1 3 π ) rad = 540 o + 60 o
Based on the above circular diagram, the positive angle of 10 3 π radians  is in the third quadrant.



(e)
Based on the above circular diagram, the negative angle of –60° is in the fourth quadrant.



(f)
–500° = –360° – 140°
Based on the above circular diagram, the negative angle of –500° is in the third quadrant.


(g)

3 1 4 π rad = ( 3 π 1 4 π ) rad = 540 o 45 o
Based on the above circular diagram, the negative angle of 3 1 4 π radians  is in the second quadrant.


Short Question 4 – 6


Question 4:
Solve the equation 3 sin A cos A – cos A = 0 for 0°  A  360°.

Solution:
3 sin A cos A – cos A = 0
cos A (3 sin A – 1) = 0
cos A = 0   or   sin A

cos A = 0
A = 90°, 270°

sin A
Basic angle = 19°28'
A = 19°28', 180° – 19°28'
A = 19°28', 160°32'

Hence A = 19°28', 90°, 160°32', 270°.



Question 5:
Solve the equation 4 sin (x – π) cos (x – π) = 1 for 0ox ≤ 360o.
 
Solution:
4 sin (x – π) cos (x – π) = 1
2 [2 sin (x – π) cos (x – π)] = 1
2 sin (x – π) cos (x – π) = ½
sin 2(x – π) = ½  ← (sin 2x= 2 sinx cosx)
sin 2(x – 180o) = ½  ← (π rad = 180o)
sin (2x – 360o) = ½
sin 2x cos 360o – cos 2x sin 360o = ½
sin 2x (1) – cos 2x (0)  = ½  ← (cos 360o = 1, sin 360o = 0)
sin 2x = ½
basic angle = 30o  ← (special angle, sin 30o= ½)
2x = 30o, 150o, 390o, 510o
x = 15o, 75o, 195o, 255o

5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)


5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)
Example 2:
(a) Sketch the graph y = –½ cos x for 0 ≤ x 2π.
(b) Hence, using the same axes, sketch a suitable graph to find the number of solutions to the equation π 2 x + cos x = 0 for 0 ≤ x 2π.
State the number of solutions.

Solution:
(a)



(b)


π 2 x + cos x = 0 π 2 x = cos x π 4 x = 1 2 cos x Multiply both sides by 1 2 y = π 4 x y = 1 2 cos x

The suitable graph to draw is y = π 4 x .  
x
π 2
π
2π
y = π 4 x
½
¼
From the graphs, there are two points of intersection for 0 ≤ x ≤ 2π.
Number of solutions = 2.


Basic Trigonometric Identities


5.4 Basic Trigonometric Identities

Three basic trigonometric identities are:

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x
cot2 x + 1 = cosec2 x

[adinserter block="3"]
Example 1 (To Prove Trigonometric Identities which involve the Three Basic Identities)
Prove each of the following trigonometric identities.
(a) sin2 x – cos2 x = 1 – 2 cos2 x
(b) (1 – cosec2 x) (1– sec2 x) = 1

Solution:
(a)
sin2 x– cos2 x = 1 – 2 cos2x
LHS: sin2 x – cos2 x
= 1 – cos2 x – cos2 x
= 1 – 2 cos2 x (RHS)
 
(b)
( 1 cosec 2 x ) ( 1 sec 2 x ) = 1 LHS: ( 1 cosec 2 x ) ( 1 sec 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( 1 tan 2 x ) tan 2 x = 1 (RHS)



Example 2 (To Solve Trigonometric Equations which involve the Three Basic Identities)
Solve the following trigonometric equations for 0ox ≤ 360o.
(a) sin2 x cos x + 1 = cos x
(b) 2 cosec2 x – 5 cot x = 0

Solution:
(a)
sin2 cos x + 1 = cos x
(1 – cos2 x) cos x + 1 = cos x
cos x – cos3 x + 1 = cos x
cos3 x = 1
cos x = 1
x = 0o, 360o

(b)
2 cosec2 x – 5 cot x = 0
2 (1 + cot2 x) – 5 cot x = 0
2 + 2 cot2 x – 5 cot x = 0
2 cot2 x – 5 cot x + 2 = 0
(2 cot x – 1) (cot x – 2) = 0
cot x= ½ or cotx = 2
cot x= ½ or cot x = 2
tan x = 2 tan x = ½
x =63.43o, 243.43o   x = 26.57o, 206.57o

(Note: tangent is positive in the first and third quadrants)

Thus, x = 26.57o, 63.43o, 206.57o, 243.43o


Short Question 6 & 7


Question 6:
The points P, Q and R are collinear. It is given that   P Q = 4 a ˜ 2 b ˜  and   Q R = 3 a ˜ + ( 1 + k ) b ˜ , where k is a constant. Find
(a)    the value of k,
(b)    the ratio of PQ : QR.

Solution:
(a)
Note: If P, Q and R are collinear, PQ =m QR 4 a ˜ 2 b ˜ =m[ 3 a ˜ +( 1+k ) b ˜ ] 4 a ˜ 2 b ˜ =3m a ˜ +m( 1+k ) b ˜ Comparing vector: a ˜ : 4=3m         m= 4 3 b ˜ : 2=m( 1+k ) 2= 4 3 ( 1+k ) 1+k= 6 4 k= 3 2 1 k= 5 2

(b)
P Q = m Q R P Q = 4 3 Q R P Q Q R = 4 3 P Q : Q R = 4 : 3



Question 7:
Given that x ˜ = 3 i ˜ + m j ˜ and   y ˜ = 4 i ˜ 3 j ˜ , find the values of m if the vector   x ˜    is parallel to the vector y ˜ .

Solution:
If vector  x ˜  is parallel to vector  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Comparing vector: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4

4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors


4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors
1. When a vector a ˜ is multiplied by a scalar k, the product is k a ˜ . Its magnitude is k times the magnitude of the vector a ˜ .

2. The vector a ˜ is parallel to the vector b ˜ if and only if b ˜ = k a ˜ , where k is a constant.

3. If the vectors a ˜ and b ˜ are not parallel and h a ˜ = k b ˜ , then h = 0 and k = 0.
 


Example 1:
If vectors a ˜ and b ˜  are not parallel and ( k 7 ) a ˜ = ( 5 + h ) b ˜ , find the value of k and of h.

Solution:
The vectors a ˜ and b ˜ are not parallel, so
k – 7 = 0 → = 7
5 + h = 0 → h = –5