6.2.3 Algebraic Expressions (III), PT3 Practice


Question 11:
(a)
Expand: x (2 + y)

(b)
Express 56y3x512y as a single fraction in its simplest form.

Solution:
(a)
x (2 + y) = 2x + xy

(b)
56y3x512y=5×26y×23x512y=10(3x5)12y=103x+512y=153x12y=3(5x)124y=5x4y


6.2.2 Algebraic Expressions (III), PT3 Practice


6.2.2 Algebraic Expressions (III), PT3 Practice
 
Question 6:

(a) Simplify each of the following:
(i)12mn32(ii)x2xyx
(b) Express 12q2p76q  as a single fraction in its simplest form.

Solution:

(a)(i)12mn32=3mn8(a)(ii)x2xyx=x(xy)x=xy

(b)

12q2p76q=1×32q×3(2p7)6q=32p+76q=102p6q=2(5p)36q=5p3q


Question 7:
  (a) Factorise 2ae + 3af – 6de – 9df
  (b)   Simplify a2b2(a+b)2

Solution:
(a)
2ae + 3af – 6de – 9df = (2+ 3f ) – 3d (2e + 3f)
= (2+ 3f ) (a – 3d)

(b)
a2b2(a+b)2=(a+b)(ab)(a+b)(a+b)=aba+b


Question 8:
  (a) Factorise –8c2 – 12ac.
  (b)   Simplify ae+ad2be2bda24b2.  

Solution:
(a)
–8c2– 12ac
= –4c (2c + 3a)

(b)
ae+ad2be2bda24b2=a(e+d)2b(e+d)(a+2b)(a2b)=(e+d)(a2b)(a+2b)(a2b)=e+da+2b


Question 9:
  (a) Factorise 12x2 – 27y2
  (b)   Simplify 3m210m+3m29÷3m1m+3.  

Solution:
(a)
12x– 27y2 = 3 (4x2 – 9y2)
= 3(2x – 3y) (2x + 3y)

(b)
3m210m+3m29÷3m1m+3=(3m1)(m3)(m+3)(m3)×m+33m1=1
  

Question 10:
Simplify: 8m+mn3m÷n26424

Solution:
8m+mn3m÷n26424=8m+mn3m×24n264=m(8+n)3m×24n282=m(8+n)3m×248(n8)(n+8)=8n8

6.2.1 Algebraic Expressions (III), PT3 Practice


6.2.1 Algebraic Expressions (III), PT3 Practice

Question 1:
(a)(i) Factorise 18a + 3
(a)(ii) Expand –3 (–y + 5)
(b) Express 56y3x512y as a single fraction in its simplest form.

Solution:
(a)(i) 18+ 3 = 3(6a + 1)
 
(a)(ii) –3 (–+ 5) = 3y – 15
 
(b)
56y3x512y=5×26y×2(3x5)12y=103x+512y=153x12y=3(5x)412y=5x4y


Question 2:
(a) Expand:
 (i) 3 (–a + c)
 (ii) –5 (c)
(b) Factorise 4+ 2
(c) Simplify: 3x+6x24÷x+2x2   

Solution:
(a)(i) 3 (–+ c) = –3a + 3c
 
(a)(ii) –5 (c) = –5a + 5c
 
(c)
3x+6x24÷x+2x2=3(x+2)(x+2)(x2)×x2x+2=3x+2



Question 3:
(a) Factorise:
 (i) 5m + 25
 (ii) 7x + 9xy
(b) Simplify: 4x124y÷x29yz

Solution:
(a)(i)5m + 25 = 5 (m + 5)
 
(a)(ii)7x + 9xy = x (7 + 9y)

(b)4x124y÷x29yz=4(x3)4y×yz(x+3)(x3)=zx+3


Question 4:
  (a) Factorise completely:
  4 – 100n2
(b) Express 45x710y15x  as a single fraction in its simplest form.

Solution:
(a)
4 – 100n2= (2 + 10n)(2 – 10n)
(b)
45x710y15x=4×35x×3(710y)15x=127+10y15x=5+10y15x=5(1+2y)315x=1+2y3x


Question 5:
  (a) Simplify:
(m – 4n)(m + 4n) – m2
  (b) Simplify: 3x3yx+y×2x+2y6x  

Solution:
(a)
(m – 4n)(+ 4n) – m2
= m2 + 4mn – 4mn – 4n2m2
= 0
 
(b)
3x3yx+y×2x+2y6x=3(xy)x+y×2(x+y)6x=xyx


6.1 Algebraic Expressions III


6.1 Algebraic Expressions III

6.1.1 Expansion
1. The product of an algebraic term and an algebraic expression:
  • a(b + c) = ab + ac
  •  a(bc) = ab ac
2. The product of an algebraic expression and another algebraic expression:
  • (a + b) (c + d)  = ac + ad + bc + bd
  • (a + b)2= a2 + 2ab + b2
  • (ab)2= a2 – 2ab + b2
  • (a + b) (ab) = a2b2

6.1.2 Factorization
1. Factorize algebraic expressions:
  •  ab + ac = a(b + c)
  • a2b2 = (a + b) (ab)
  • a2+ 2ab + b2 = (a + b)2
  • ac + ad + bc + bd = (a + b) (c + d)  
2. Algebraic fractions are fractions where both the numerator and the denominator or either the numerator or the denominator are algebraic terms or algebraic expressions.
Example:
3b,a7,a+ba,bab,abc+d


3(a) Simplification of algebraic fractions by using common factors:
14bc312bd=c3dbm+bnem+en=b(m+n)e(m+n)=be

3(b) Simplification of algebraic fractions by using difference of two squares:
a2b2an+bn=(a+b)(ab)n(a+b)=abn
 

6.1.3 Addition and Subtraction of Algebraic Fractions
1. If they have a common denominator:
am+bm=a+bm

2.
If they do not have a common denominator:
am+bn=an+bmnm


6.1.4 Multiplication and Division of Algebraic Fractions
1. Without simplification:
am×bn=abmnam÷bn=am×nb=anbm  

2. 
With simplification:
acm×bmd=abcdacm÷bdm=acm×dmb=adbc