11.2.3 Perimeter and Area, PT3 Practice


Question 9:
In diagram below, ADB is a right-angled triangle and DBFE is a square. C is the midpoint of DB and CH = CD.
Calculate the area, in cm2, of the coloured region.

Solution:
Area of  ABC=12×6×8=24 cm2Area of trapezium BCHF=12×(12+6)×6=54 cm2Area of CDEFH=(12×12)54=14454=90 cm2Area of coloured region=24+90=114 cm2


Question 10:
Diagram below shows a rectangle ACDE.

Calculate the area, in cm2, of the coloured region.

Solution:
Using Pythagoras' theorem (Refer Form 2 Chapter 6)FE2=DF2DE2        =132122        =169144        =25FE=25=5 cmAF=85=3 cmAB=128=4 cmArea of rectangle ACDE=8×12=96 cm2Area of  ABF=12×3×4=6 cm2Area of  DEF=12×5×12=30 cm2Area of coloured region=96306=60 cm2


Question 11:
Diagram below shows a sketch of parallelogram shaped garden, PQRS that consists of flower beds and a playground.

Calculate the area, in m2, of the flower beds.

Solution:
Area flower bed=(12×14)(12×12×7)=16842=126 m2



11.2.2 Perimeter and Area, PT3 Practice


Question 5:
In diagram below, PQUV is a square, QRTU is a rectangle and RST is an equilateral triangle.


The perimeter of the whole diagram is 310 cm.
Calculate the length, in cm, of PV.

Solution:
PV=VU=TS=SR=QPGiven perimeter of the whole diagram=310 cmPV+VU+UT+TS+SR+RQ+QP=310PV+PV+50+PV+PV+50+PV=3105PV+100=310 5PV=210   PV=42 cm


Question 6:
In diagram below, ABCD and CGFE are rectangles. M, G, E and N are midpoints of AB, BC, CD and DA respectively.


Calculate the perimeter, in cm, of the coloured region.

Solution:


Using Pythagoras' theoremMG2=MF2+FG2=52+122=25+144=169MG=13 cmPerimeter of the coloured region=13+13+5+12+5+12=60 cm


Question 7:
Diagram below shows a trapezium BCDE and a parallelogram ABEF. ABC and FED are straight lines.

The area of ABEF is 72 cm2.
Calculate the area, in cm2, of trapezium BCDE.

Solution:
Base × Height =Area of ABFE9 cm × Height=72 cm2 Height=729=8 cmCD=8 cmBC=239 =14 cmArea of trapezium BCDE=12×(BC+ED)×CD=12×(14+9)×8=92 cm2


Question 8:
In diagram below, ACEF is a trapezium and BCDG is a square.


Calculate the area, in cm2, of the coloured region.

Solution:
Area of trapezium ACEF=12×(8+15)×10=115 cm2Area of square BCDG=4×4=16 cm2Area of trapezium GDEF=12×(4+15)×6=57 cm2Area of coloured region=1151657=42 cm2

11.2.1 Perimeter and Area, PT3 Practice


Question 1:
In the diagram, ABCD is a trapezium and ABEF is a parallelogram.

Calculate the area, in cm2, of the coloured region.

Solution
:

Area of trapezium ABCD=12×(8+14)×10=110 cm2Area of parallelogram ABEF=8×6=48 cm2Area of the shaded region=11048=62 cm2


Question 2:
Diagram below shows a rectangle ABCD.


Calculate the area, in cm2, of the coloured region.

Solution:

The area of the coloured region=Area of rectangleArea of trapezium=(12×8)12×(4+6)×4=9620=76 cm2


Question 3:
In diagram below, AEC is a right-angled triangle with an area of 54 cm2 and BCDF is a rectangle.
Calculate
(a) the perimeter, in cm, of the coloured region.
(b) the area, in cm2, of the coloured region.

Solution:
(a)Given area of  ACE12×AC×9=54   AC=54×29   AC=12 cmUsing Pythagoras' theorem:AE=92+122  =15 cmPerimeter of coloured region=6+4.5+6+4.5+15=36 cm

(b)Area of the coloured region=Area of  ACEArea of rectangle BCDF=54(6×4.5)=5427=27 cm2


Question 4:
Diagram below shows a trapezium ABCDE. ABGF is a square with an area of 36 cm2.


Calculate
(a) the perimeter, in cm, of the coloured region.
(b) the area, in cm2, of the coloured region.

Solution:

(a)Using Pythagoras' theorem:In  CDH,CD=82+62 =10 cmAB=BG=GF=FA=36=6 cmPerimeter of coloured region=6+10+18+2+6+6=48 cm

(b)Area of the coloured region=Area of trapezium ABCDEArea of square ABGF=[12(12+18)×8]36=[12×30×8]36=12036=84 cm2