2.2.2 Polygons II, PT3 Practice


Question 6:
In diagram below, PQRSTU is a regular hexagon QUV is a straight line.



Find the value of x.

Solution:
Each interior angle=(62)×180o6=120oPUQ=180o120o2=30o (PUQ is a isosceles triangle)xo=180o30o=150ox=150



Question 7:
In diagram below, PQRSTU is a hexagon. UPE, PQF, QRG, RSH and UTJ are straight lines.



Find the value of x.

Solution:
Sum of all the exterior angles of any polygon=360o25o+3xo+2xo+40o+75o+55o=360o5xo+195o=360o  5xo=360o195o   =165oxo=165o÷5   =33o x=33



Question 8:
In Diagram below, A, B, C, D and E are vertices of a 9 sided regular polygon.

Find the value of x.

Solution:
Exterior angle =360o9=40oInterior angle=180o40o=140oSum of interior angles of pentagon ABCDE=(52)×180o=540oxo+140o+140o+140o+xo=540o2xo=540o420o =120o  xo=60o   x=60


2.2.1 Polygons II, PT3 Practice


2.2.1 Polygons II, PT3 Practice

Question 1:
Diagram below shows a pentagon PQRST. TPU and RSV are straight lines.
Find the value of x.

Solution:
Sum of interior angles of a pentagon=(52)×180o=3×180o=540oTSR=180o70o          =110oTPQ=180o85o          =95oxo=540o(110o+105o+115o+95o)    =540o425o    =115o   x=115


Question 2:
In Diagram below, PQRSTU is a hexagon. APQ and BTS are straight lines.
Find the value of x + y.

Solution:

QPU=180o160o=20oReflexPUT=360o80o=280oUTS=180o120o=60oTSR=180o35o=145oSum of interior angles of a hexagon=(62)×180o=720oxo+yo+145o+60o+280o+20o=720oxo+yo=720o505o=215ox+y=215


Question 3:
Diagram below shows a regular hexagon PQRSTU. PUV is a straight line.
Find the value of x + y.

Solution:
Size of each interior angle of a regular hexagon=(62)×180o6=120oxo=180o120o2=30oyo=180o120o=60oxo+yo=30o+60o=90ox+y=90


Question 4:
In the diagram below, KLMNP is a regular pentagon. LKS and MNQ are straight lines.
Find the value of x + y.
 
Solution:
Size of each interior angle of a regular pentagon=(52)×180o5=108oPKS=PNQ=180o108o=72oReflex angleKPN=360o108o=252o

Sum of interior angles of a hexagon=(62)×180o=720oxo+yo+72o+252o+72o+100o=720oxo+yo=720o496o=224ox+y=224


Question 5:
In Diagram below, PQR is an isosceles triangle and PRU is a straight line.
Find the value of x + y.

Solution:
xo=180o20o20o=140oPRS=180o110o=70oyo+85o+75o+70o=360oyo+230o=360oyo=130oxo+yo=140o+130o=270ox+y=270
 

2.1 Polygons II


2.1 Polygons II
 
2.1.1 Regular Polygons
1.  A regular polygon is a polygon where
(a) all its sides are of equal length, and
(b) all its interior angles are of equal size.

2. The number of axis of symmetry of a regular polygon is equal to its number of sides.

Example:


2.1.2 Exterior and Interior Angles of Polygons
1. The exterior and interior angles at a vertex of a polygon is supplementary.

2. The sum of interior angles of an n-sided polygon is  (n2)×180o  

3. 
Each interior angle of a regular n-sided polygon is
(n2)×180on

4. 
The sum of all exterior angles of a polygon is 360o.

5. Each exterior angle of a regular n-sided polygon is 
360on