2.2.3 Squares, Square Roots, Cube and Cube Roots, PT3 Practice


Question 10:
(a) Find the value of 0.09(b) Calculate the value of (57×49)2

Solution:
(a)0.09=9100=310=0.3(b)(57×49)2=(57×7)2                  =52                  =25

Question 11:
(a) Find the value of 3127(b) Calculate the value of (7+38)2

Solution:
(a) 3127=313×13×13=13(b)(7+38)2=[7+(2)]2                 =52                 =25

Question 12:
(a) Find the value of (14)3.(b) Calculate the value of (4.2÷327)2.

Solution:
(a)(14)3=14×14×14           =164(b)(4.2÷327)2=(4.2÷3)2                    =1.42                    =1.4×1.4                    =1.96

Question 13:
(a) Find the value of 30.008.(b) Calculate the value of 32×36427.

Solution:
(a) 30.008=381000           =210           =0.2(b) 32×36427=93×43                =12

Question 14:
(a) Find the value of (34)3.(b) Calculate the value of 321027÷(2232).

Solution:
(a) (34)3=34×34×34           =2764(b) 321027÷(2232)=36427÷(49)                           =43÷5                           =43×15                           =415

2.2.2 Squares, Square Roots, Cube and Cube Roots, PT3 Focus Practice


2.2.2 Squares, Square Roots, Cube and Cube Roots, PT3 Focus Practice

Question 6:
Complete the operation steps below by filling in the boxes using suitable numbers.
341727÷1916=327÷2516   =3÷54   =3×45   =


Solution:

341727÷1916=312527÷2516=53÷54=53×45=43


Question 7:
Complete the operation steps below by filling in the boxes using suitable numbers.
(27932764)2=(93)2=(12)2=

Solution:
(27932764)2=(25934)2=(5334)2=((5×4)(3×3)12)2=(1112)2=121144


Question 8:
Complete the operation steps below by filling in the boxes using suitable numbers.
3161640.32=3640.32=4=

Solution:
3161640.32=3125640.32=540.09=1.250.09=1.16


Question 9:
Find the value of:
(a)310275(b)449×30.216  

Solution:
(a)310275=31013527=312527=53

(b)449×30.216=27×32161000=27×6510=635

2.2.1 Squares, Square Roots, Cube and Cube Roots, PT3 Practice 1


2.2.1 Squares, Square Roots, Cube and Cube Roots, PT3 Practice 1

Question 1:
Calculate the values of the following:
(a)5098(b)11764(c)810.01(d)3.24  

Solution:
(a)5098=50259849=2549=57

(b)11764=8164=98=118

(c)810.01=91100=9110=90.1=8.9

(d)3.24=324100=3625=8125=95=145



Question 2:
Calculate the values of the following:
(a)316250(b)34256(c)30.008(d)30.729   

Solution:
(a)316250=38125=25

(b)34256=3164=14

(c)30.008=381000=210=0.2

(d)30.729=37291000=910=0.9



Question 3:
Find the value of 3338+21425.  

Solution:
3338+21425=3278+6425=32+85=3110=3110



Question 4:
Find the values of the following:
  (a) 1 – (–0.3)3.
  (b) (2.1÷327)2  

Solution:
(a)
1 – (–0.3)3 = 1 – [(–0.3) × (–0.3) × (–0.3)]
  = 1 – (–0.027)
  = 1 + 0.027
  = 1.027

(b)
(2.1÷327)2=(2.1÷3)2=(0.7)2=0.49



Question 5:
Find the values of the following:
(a)(9+38)2(b)144÷3216×0.33  

Solution:
(a)(9+38)2=[9+(2)]2=72=49

(b)144÷3216×0.33=144÷6×(0.3×0.3×0.3)=24×0.027=0.648


2.1 Squares, Square Roots, Cube and Cube Roots


2.1 Squares, Square Roots, Cube and Cube Roots
 
(A) Squares
The square of a number is the answer you get when you multiply a number by itself.

Example:
(a) 13= 13 × 13 = 169
(b)   (–10)= (–10) × (–10) = 100
(c) (0.4)2 = 0.4 × 0.4 = 0.16
(d)   (–0.06)= (–0.06) × (–0.06) = 0.0036
(e)(312)2=(72)2=72×72=494(f)(127)2=(97)2=(97)×(97)=8149


(B) Perfect Squares
1. Perfect squares are the squares of whole numbers.
 
2. Perfect squares are formed by multiplying a whole number by itself.
Example:
4 = 2 × 2   9 = 3 × 3   16 = 4 × 4
 
3. The first twelve perfect squares are:
= 12, 22, 32, 42, 52, 62, 72, 82, 92, 102, 112, 122
= 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144


(C) Square Roots
1. The square root of a positive number is a number multiplied by itself whose product is equal to the given number.
 
Example:
(a)169=13×13=13(b)2564=5×58×8=58(c)7298=72369849=6×67×7=67(d)3116=4916=74=134(e)1.44=1441110025=3625=65=115


(D) Cubes
1. The cube of a number is obtained when that number is multiplied by itself twice.
Example:
The cube of 3 is written as
33 = 3 × 3 × 3
   = 27

2. 
The cube of a negative number is negative.
Example:
(–2)3 = (–2) × (–2) × (–2)
= –8
3. The cube of zero is zero. The cube of one is one, 13 = 1.


(E) Cube Roots
1. The cube root of a number is a number which, when multiplied by itself twice, produces the particular number. " 3 "  is the symbol for cube root.
Example:
64 3 = 4 × 4 × 4 3 = 4  
64 3 is read as ‘cube root of sixty-four’.

2. 
The cube root of a positive number is positive.
Example:
125 3 = 5 × 5 × 5 3 = 5

3. 
The cube root of a negative number is negative.
Example:
125 3 = ( 5 ) × ( 5 ) × ( 5 ) 3 = 5

4. 
To determine the cube roots of fractions, the fractions should be simplified to numerators and denominators that are cubes of integers.
Example:
16 250 3 = 16 8 250 125 3 = 8 125 3 = 2 5