Short Questions (Question 10)


Question 10 (4 marks):
Diagram 10 shows the position of three campsites A, B and C at a part of a riverbank drawn on a Cartesian plane, such that A and B lie on the same straight riverbank.

Diagram 10

Sam wants to cross the river from campsite C to the opposite riverbank where the campsites A and B are located.
Find the shortest distance, in m, that he can take to cross the river. Give your answer correct to four decimal places.

Solution:

Let the shortest distance from campsite Cto opposite riverbank is CD.Area of ABC=12|2     7     4     3     5   3  2  3|=12|(2)(5)+(7)(3)+(4)(3)(3)(7)(5)(4)(3)(2)|=12|66|=33 units2Distance of AB=(27)2+(35)2=85 mArea of ABC=3312(AB)(CD)=3312(85)(CD)=33CD=33(2)85CD=7.1587 (4 d.p.)Thus, the shortest distance is 7.1587 m.

Short Questions (Question 8 & 9)


Question 8 (3 marks):
The following information refers to the equation of two straight lines, AB and CD.

   AB:y2kx3=0  CD:x3h+y4=1where h and k are constants.

Given the straight lines AB and CD are perpendicular to each other, express h in terms of k.

Solution:
AB:y2kx3=0y=2kx+3mAB=2kCD:x3h+y4=1mCD=43hmAB×mCD=12k×(43h)=18k=3hh=83k



Question 9 (3 marks):
A straight line passes through P(3, 1) and Q(12, 7). The point R divides the line segment PQ such that 2PQ = 3RQ.
Find the coordinates of R.

Solution:



2PQ=3RQPQRQ=32Point R=(1(12)+2(3)1+2,1(7)+2(1)1+2)=(183,93)=(6,3)


Long Questions (Question 10)


Question 10 (7 marks):
Solution by scale drawing is not accepted.
Diagram shows the locations of town M and town N drawn on a Cartesian plane.


PQ
is a straight road such that the distance from town M and town N to any point on the road is always equal.
(a) Find the equation of PQ.

(b) Another straight road, ST with an equation y = 2x + 7 is to be built.
(i) A traffic light is to be installed at the crossroads of the two roads.
Find the coordinates of the traffic light.
(ii) Which of the two roads passes through town L (43,1)?

Solution:
(a)
T(x,y) is a point on PQ.TM=TN[x(4)2]+[y(1)]2=(x2)2+(y1)2(x+4)2+(y+1)2=(x2)2+(y1)2(x+4)2+(y+1)2=(x2)2+(y1)2x2+8x+16+y2+2y+1=x24x+4+y22y+18x+2y+17+4x+2y5=012x+4y+12=03x+y+3=0Equation of PQ:3x+y+3=0


(b)(i)
y=2x+7  ............ (1)3x+y+3=0 ............ (2)Substitute (1) into (2):3x+2x+7+3=05x=10x=2When x=2,From (1),y=2(2)+7=3Coordinates of traffic light=(2,3).


(b)(ii)
L(43,1):x=43,y=1The equation of ST:y=2x+7Left hand side: y=1Right hand side: 2(43)+7=413Thus, the road y=2x+7 does not pass through L.The equation of PQ:3x+y+3=0Left hand side: 3x+y+3=3(43)+1+3   =4+4=0Right hand side=0Left hand side=Right hand sideThus, the road 3x+y+3=0passes through L.


Long Questions (Question 9)


Question 9 (6 marks):
Solution by scale drawing is not accepted.
Diagram shows a triangle OCD.
Diagram

(a) Given the area of triangle OCD is 30 units2, find the value of h.

(b)
Point Q (2, 4) lies on the straight line CD.
(i) Find CQ : QD.
(ii) Point P moves such that PD = 2 PQ.
  Find the equation of the locus P.

Solution:
(a)
Given Area of  OCD = 3012 |0  h6 0  2   8  00|=30|(0)(2)+(h)(8)+(6)(0)(0)(h)(2)(6)(8)(0)|=60|0+8h+00+120|=60|8h+12|=608h+12=608h=48h=6or 8h+12=608h=72h=9(ignore)


(b)(i)

[6(m)+(6)(n)m+n, 2(m)+(8)(n)m+n]=(2, 4)6m6nm+n=26m6n=2m+2n4m=8nmn=84mn=212m+8nm+n=42m+8n=4m+4n2m=4nmn=42mn=21Thus, CQ=QD=2:1


(b)(ii)
PD=2PQ(x6)2+(y2)2=2(x2)2+(y4)2(x6)2+(y2)2=4[(x2)2+(y4)2]x212x+36+y24y+4=4[x24x+4+y28y+16]x212x+36+y24y+4=4x216x+16+4y232y+64The equation of locus P:3x2+3y24x28y+40=0


Long Questions (Question 7 & 8)


Question 7:
The diagram shows a straight line PQ which meets a straight line RS at the point Q. The point P lies on the y-axis.
(a) Write down the equation of RS in the intercept form.
(b) Given that 2RQ = QS, find the coordinates of Q.
(c) Given that PQ is perpendicular to RS, find the y-intercept of PQ.


Solution:
(a) 
Equation of RS
x12+y6=1x12y6=1

(b)
Given 2RQ=QSRQQS=12Lets coordinates of Q=(x, y)((0)(2)+(12)(1)1+2,(6)(2)+(0)(1)1+2)=(x, y)x=123=4y=123=4Q=(4,4)

(c) 
Gradient of RS, mRS=(612)=12mPQ=1mRS=112=2
Point Q = (4, –4), m = –2
Using y = mx+ c
–4 = –2 (4) + c
c = 4
y–intercept of PQ = 4



Question 8:
In the diagram, the equation of FMG is y = – 4. A point P moves such that its distance from E is always half of the distance of E from the straight line FG. Find
(a) The equation of the locus of P,
(b) The x-coordinate of the point of intersection of the locus and the x-axis.


Solution:
(a) 
Gradient of the straight line FMG = 0
EM is perpendicular to FMG, so gradient of EM also = 0, equation of EM is x = 2
Thus, coordinates of point M = (2, 4).

Let coordinates of point P= (x, y).
Given PE = ½ EM
2PE = EM
2 [(x – 2)2+ (y – 4)2]½ = [(2 2)2 + (4 (4))2]½
4 (x2 – 4x + 4 + y2 – 8y +16) = (0 + 64) → (square for both sides)
4x2 – 16x + 16 + 4y2 – 32y + 64 = 64
4x2 + 4y2 – 16x – 32y + 16 = 0
x2 + y2 – 4x – 8y + 4 = 0

(b) 
x2 + y2 – 4x – 8y + 4 = 0
At x axis, y = 0.
x2 + 0 – 4x – 8(0) + 4 = 0
x2  – 4x+ 4 = 0
(x – 2) (x – 2) = 0
x = 2

The x-coordinate of the point of intersection of the locus and the x-axis is 2.

Long Questions (Question 6)


Question 7:
Solutions by scale drawing will not be accepted.
Diagram below shows a triangle OPQ. Point S lies on the line PQ.

(a) A point Y moves such that its distance from point S is always 5 uints.
Find the equation of the locus of Y.  

(b) It is given that point and point Q lie on the locus of Y    .
Calculate
(i) the value of k,
(ii) the coordinates of Q.

(c) Hence, find the area, in uint2, of triangle OPQ.



Solution:
(a)
The equation of the locus Y (x,y) is given by YS=5 units(x5)2+(y3)2=5x210x+25+y26y+9=25x2+y210x6y+9=0

(b)(i)
Given P (2, k) lies on the locus of Y.
(2)2 + (k)2– 10(2) – 6(k) + 9 = 0  
4 + k2– 20 – 6k + 9 = 0
k2 – 6k – 7 = 0
(k – 7) (k + 1) = 0
k = 7   or   k = – 1
Based on the diagram, k = 7. 
 
(b)(ii) 
As P and Q lie on the locus of Y, is the midpoint of PQ. P = (2, 7), S = (5, 3).
Let the coordinates of Q = (x, y),
(2+x2,7+y2)=(5,3)2+x2=5   and    7+y2=32+x=10 and    7+y=6x=8and    y=1
Coordinates of point Q = (8, –1).

(c)
Area of  OPQ=12|0 8  2   0  1 7  00|=12|0+(8)(7)+00(1)(2)0|=12|58|=29 units2

Long Questions (Question 5)


Question 5:
Diagram below shows a quadrilateral ABCD. Point C lies on the y-axis.

The equation of a straight line AD is 2y = 5x – 21
(a) Find
(i) the equation of the straight line AB,
(ii) the coordinates of A,
(b) A point P moves such that its distance from point D is always 5 units.
Find the equation of the locus of P.

Solution:
(a)(i)
2y=5x21y=52x212mAD=52mAB×mAD=1mAB×52=1mAB=25Equation of AByy1=mAB(xx1)y+1=25(x+2)5y+5=2x45y=2x9

(a)(ii)
2y=5x21 .......... (1)5y=2x9 .......... (2)(1)×5:10y=25x105 .......... (3)(2)×2:10y=4x18 .......... (4)(2)(4):0=29x87x=3From (1),2y=15212y=6y=3A=(3 , 3)

(b)
y=2,4=5x215x=25x=5Point D=(5, 2)PD=5(x5)2+(y2)2=5(x5)2+(y2)2=25x210x+25+(y24y+4)=25x2+y210x4y+4=0

Long Questions (Question 4)


Question 4:
Solutions by scale drawing will not be accepted.
Diagram below shows a triangle PRS. Side PR intersects the y-axis at point Q.

(a) Given PQ : QR = 2 : 3, find
(i) The coordinates of P,
(ii) The equation of the straight line PS,
(iii) The area, in unit2, of triangle PRS.
(b) Point M moves such that its distance from point R is always twice its distance from point S.
Find the equation of the locus M.

Solution:
(a)(i) 
P=(2(6)+3h2+3,2(12)+3k2+3)(0,6)=(12+3h5,24+3k5)12+3h5=0      3h=12 h=424+3k5=63k=3024k=2P=(4,2)

(a)(ii) 
mPS=2(6)42 =86 =43Equation of PS:yy1=43(x2)y(6)=43x+833y+18=4x+83y=4x10

(a)(iii) 
Area of  PRS=12|4   2    6  2  6 12  42|=12|(24+24+12)(43648)|=12|60(80)|=70 unit2

(b) 
Let P=(x,y)MR=2MS(x6)2+(y12)2=2(x2)2+(y+6)2(x6)2+(y12)2=4[(x2)2+(y+6)2]x212x+36+y224y+144=4[x24x+4+y2+12y+36]x212x+y224y+180=4x216x+4y2+48y+1603x2+3y24x+72y20=0

Long Questions (Question 3)


Question 3:
The diagram shows a triangle LMN where L is on the y-axis. The equation of the straight line LKN and MK are 2y – 3x + 6 = 0 and 3y + x– 13 = 0 respectively. Find
(a) the coordinates of K
(b) the ratio LK:KN


Solution:
(a)
2y – 3x + 6 = 0 ----(1)
3y + x – 13 = 0 ----(2)
x = 13 – 3y ----(3)

Substitute equation (3) into (1),
2y – 3 (13 – 3y) + 6 = 0
2y – 39 + 9y + 6 = 0
11y = 33
y = 3
Substitute y = 3 into equation (3),
x = 13 – 3 (3)
x = 4
Coordinates of K = (4, 3).

(b)
Given equation of LKN is 2y – 3x + 6 = 0
At y – axis, x = 0,
x coordinates of point L = 0.

Ratio LK:KNEquating the x coordinates,LK(10)+KN(0)LK+KN=410LK=4LK+4KN6LK=4KNLKKN=46LKKN=23Ratio LK:KN=2:3

Long Questions (Question 2)


Question 2:
In the diagram, PRS and QRT are straight lines. Given is the midpoint of PS and
QR : RT = 1 : 3, Find
(a) the coordinates of R,
(b) the coordinates of T,
(c) the coordinates of the point of intersection between lines PQ and ST produced.


Solution:
(a)
Given R is the midpoint of PS.
R=(3+72,2+62)R=(5, 4)

(b)
QR:RT=1:3Lets coordinates of T=(x, y)((1)(x)+(3)(4)1+3,(1)(y)+(3)(5)1+3)=(5, 4)x+124=5x+12=20x=8y+154=4y+15=16y=1T=(8, 1)

(c)
Gradient of PQ=5243=3Equation of PQ,y2=3(x3)y2=3x9y=3x7(1)Gradient of ST=6178=5Equation of ST,y1=5(x8)y1=5x+40y=5x+41(2)
 
Substitute (1) into (2),
 3x – 7 = –5x + 41
 8x = 48
 x = 6

 From (1),
 y = 3(6) – 7 = 11 

The coordinates of the point of intersection between lines PQ and ST = (6, 11).