Change of Base of Logarithms – Example 5

Example 5
Given that log23=1.585   and log25=2.322  , evaluate the following.
(a) log815
(b) log50.6
(c) log1530
(d) log1645

Solution:







5.2(a) Example 1 (Logarithms)

Example 1
Find the value of each of the following :
(a) log264
(b) log31
(c) log55
(d) log124
(e) log80.25






Example 2
Solve the following equations:
(a) log35x=2
(b) logx+181=2
(c) logx5x6=2





Short Questions (Question 15 – 17)


Question 15 (4 marks):
(a) Given P=logaQ, state the conditions of a.(b) Given log3y=2logxy3, express y in terms of x.

Solution:
(a)
a > 0, a ≠ 1

(b)
log3y=2logxy3logxyylogxy3=2logxy3logxyy=2y=(xy)2y=x2y21x2=y2yy=1x2


Question 16 (3 marks):
Given 25h+3125p1=1, express p in terms of h.

Solution:
25h+3125p1=125h+3=125p1(52)h+3=(53)p152h+6=53p32h+6=3p33p=2h+9p=2h+93


Question 17 (3 marks):
Solve the equation:logm324logm2m=2

Solution:
logm324logm2m=2logm324logm2mlogmm12=2logm3242(logm2mlogmm)=2logm3242logm2m=2logm324logm(2m)2=logmm2logm(3244m2)=logmm23244m2=m24m4=324m4=81m=±3(3 is rejected)

Long Questions (Question 3 – 4)


5.6.2 Indices and Logarithms, SPM Practice (Long Questions)

Question 3:
Given that = 3r and q = 3t, express the following in terms of and/ or t.
(a)  (a) log3pq227,
(b)  log9p – log27 q.

Solution:
(a)
Given p = 3r, log3 p = r
q= 3t, log3 q =t

log3pq227
= log3 pq2 – log327
= log3 p + log3 q2 – log3 33
= r + 2 log3 q – 3 log3 3
= r + 2 log3 q – 3(1)
= r + 2t – 3

(b)
log9 p– log27 q
=log3plog39log3qlog327=rlog332tlog333=r2log33t3log33=r2t3   



Question 4:
(a)  Simplify:
log2(2x + 1) – 5 log4 x2 + 4 log2 x
(b)  Hence, solve the equation:
log2(2x + 1) – 5 log4 x2 + 4 log2 x = 4

Solution:
(a)
log2 (2x + 1) – 5 log4 x2 + 4 log2 x
=log2(2x+1)5log2x2log24+4log2x=log2(2x+1)52log2x2+log2x4=log2(2x+1)log2(x2)(52)+log2x4
=log2(2x+1)log2x5+log2x4=log2(2x+1)(x4)x5=log22x+1x

(b)
log2 (2x + 1) – 5 log4 x2 + 4 log2 x = 4
log22x+1x=4  2x+1x=24  2x+1x=16  2x+1=16x 14x=1x=114


Long Questions (Question 1 – 2)


5.6.1 Indices and Logarithms, SPM Practice (Long Questions)

Question 1:
(a)  Find the value of
i.   2 log2 12 + 3 log25 – log2 15 – log2 150.
ii.   log832
(b)  Shows that 5n  + 5n + 1 + 5n + 2  can be divided by 31 for all the values of n which are positive integer.

Solution:
(a)(i)
2 log2 12 + 3 log2 5 – log215 – log2 150
= log2 122 + log2 53– log2 15 – log2 150
=log2122×5315×150
= log2 8
= log2 23
= 3

(a)(ii)
log832=log232log28   =log225log223=53

(b)
5n  + 5n + 1 + 5n + 2
= 5n  + (5 × 5n ) + (52 × 5n )
= 5n  (1 + 5 + 52)
= 31 × 5n  

Therefore, 5n  + 5n + 1 + 5n + 2 can be divided by 31 for all the values of n which are positive integer.



Question 2:
(a)  Given log10 x = 3 and log10y = –2. Shows that 2xy – 10000y2 = 19.
(b)  Solve the equation log3 x = log9(x + 6).

Solution:
(a)
log10x = 3   → (x = 103)
log10y = –2 → (y = 10-2)
2xy – 10000y2 = 19
Left hand side:
2xy – 10000y2
= 2 × 103 × 10-2 – 10000 (10-2)2
= 20 – 10000 (10-4)
= 20 – 1
= 19
= right hand side

(b)
log3x=log9(x+6)log3x=log3(x+6)log39log3x=log3(x+6)log332log3x=log3(x+6)2
2log3 x= log3 (x + 6)
log3 x2= log3 (x + 6)
x2= x + 6
x2x – 6 = 0
(x + 2) (x – 3) = 0
x = – 2 atau 3.
log3 (– 2) not accepted (logarithm of a negative number is undefined)
Jadi, x = 3.

Short Questions (Question 12 – 14)


Question 12
Solve the equation,  log25x+log416x=6

Solution:
log25x+log416x=6log25x+log216xlog24=6log25x+log216x2=62log25x+log216x=12log2(5x)2+log216x=12log2(25x)+log216x=12log2(25x)(16x)=12log2400x2=12400x2=212x2=10.24x=3.2




Question 13
Given that 2 log2 (xy) = 3 + log2x + log2 y
Prove that x2 + y2– 10xy = 0.

Solution:
2 log2 (xy) = 3 + log2x + log2 y
log2 (xy)2 = log2 8 + log2 x + log2y
log2 (xy)2 = log2 8xy
(xy)2 = 8xy
x2– 2xy + y2 = 8xy
x2 + y2 – 10xy = 0 (proven)



Question 14 (2 marks):
Given 2p + 2p = 2k. Express p in terms of k.

Solution:
2p+2p=2k2(2p)=2k2p=2k212p=2k1p=k1

Short Questions (Question 9 – 11)


Question 9
Solve the equation,  log24x=1log4x

Solution:
log24x=1log4xlog24x=1log2xlog24log24x=1log2x22log24x=2log2xlog216x2=log24log2xlog216x2=log24x16x2=4xx3=416=14x=(14)13=0.62996




Question 10
Solve the equation,  log4x=25logx4

Solution:
log4x=25logx41logx4=25logx4125=(logx4)2logx4=±15logx4=15   or   logx4=154=x15   4=x15x=454=1x15x=1024 x15=14   x=11024



Question 11
Solve the equation,  2logx5+log5x=lg1000

Solution:
2logx5+log5x=lg10002.1log5x+log5x=3×(log5x)2+(log5x)2=3log5x(log5x)23log5x+2=0(log5x2)(log5x1)=0log5x=2  or  log5x=1x=52 x=5x=25

Short Questions (Question 5 – 8)


Question 5
Solve the equation, log9(x2)=log32

Solution:
log9(x2)=log32logab=logcblogcalog3(x2)log39=log32log3(x2)2=log32log3(x2)=2log32log3(x2)=log322x2=4x=6




Question 6
Solve the equation, log9(2x+12)=log3(x+2)

Solution:
log9(2x+12)=log3(x+2)log3(2x+12)log39=log3(x+2)log3(2x+12)=2log3(x+2)log3(2x+12)=log3(x+2)22x+12=x2+4x+4x2+2x8=0(x+4)(x2)=0x=4 (not accepted)x=2




Question 7
Solve the equation, log4x=32log23

Solution:
log4x=32log23log2xlog24=32log23log2x2=32log23log2x=2×32log23log2x=3log23log2x=log233x=27




Question 8
Solve the equation, 2log52=log2(2x)

Solution:
2log52=log2(2x)2=log52.log2(2x)2=1log25.log2(2x)2log25=log2(2x)log252=log2(2x)25=2xx=23

Short Questions (Question 1 – 4)


Question 1
Solve the equation, log3 [log2(2x – 1)] = 2

Solution:
log3 [log2 (2x – 1)] = 2 ← (if log a N = x, N = ax)
log2 (2x – 1) = 32
log2 (2x – 1) = 9
2x – 1 = 29
x = 256.5




Question 2
Solve the equation,   log16[log2(5x

Solution:
l o g 16 [ l o g 2 ( 5 x   4 ) ] = l o g 9 3 l o g 16 [ l o g 2 ( 5 x   4 ) ] = 1 4 log 9 3 = log 9 3 1 2 = 1 2 log 9 3 = 1 2 ( 1 log 3 9 ) = 1 2 ( 1 2 ) = 1 4 l o g 2 ( 5 x   4 ) = 16 1 4 l o g 2 ( 5 x   4 ) = 2 5 x   4 = 2 2 5 x = 8 x = 8 5



Question 3
Solve the equation, 5 log 4 x = 125

Solution:
5 log 4 x = 125 log 5 5 log 4 x = log 5 125 put log for both side ( log 4 x ) ( log 5 5 ) = 3 ( log 4 x ) ( 1 ) = 3 x = 4 3 = 64




Question 4
Solve the equation, 5 log 5 ( x + 1 ) = 9

Solution:
5 log 5 ( x + 1 ) = 9 log 5 5 log 5 ( x + 1 ) = log 5 9 log 5 ( x + 1 ) . log 5 5 = log 5 9 log 5 ( x + 1 ) = log 5 9 x + 1 = 9 x = 8


5.4 Equations Involving Logarithms (Example 4 & 5)

Example 4
Solve the following equation :
(a) log 9 ( x 2 ) = log 3 2
(b) log 4 x = 3 2 log 2 3








Example 5
Solve the following :
(a) log 4 x = 25 log x 4
(b) log 2 5 x + log 4 16 x = 6