3.6.1 Integration as the Summation of Volumes – Examples

Example 1:
Find the volume generated for the following diagram when the shaded region is revolved through 360° about the x-axis.


Solution:
Volume generated, Vx
V x = π a b y 2 d x V x = π 2 4 ( 3 x 8 x ) 2 d x V x = π 2 4 ( 3 x 8 x ) ( 3 x 8 x ) d x V x = π 2 4 ( 9 x 2 48 + 64 x 2 ) d x V x = π [ 9 x 3 3 48 x + 64 x 1 1 ] 2 4 V x = π [ 3 x 3 48 x 64 x ] 2 4 V x = π [ ( 3 ( 4 ) 3 48 ( 4 ) 64 4 ) ( 3 ( 2 ) 3 48 ( 2 ) 64 2 ) ] V x = π ( 16 + 104 ) V x = 88 π u n i t 3


Example 2:
Find the volume generated for the following diagram when the shaded region is revolved through 360° about the y-axis.


Solution:
Volume generated, Vy
V y = π a b x 2 d y V y = π 1 2 ( 2 y ) 2 d y V y = π 1 2 ( 4 y 2 ) d y V y = π 1 2 4 y 2 d y V y = π [ 4 y 1 1 ] 1 2 = π [ 4 y ] 1 2 V y = π [ ( 4 2 ) ( 4 1 ) ] V y = 2 π u n i t 3


3.5.1 Integration as the Summation of Areas – Examples


Example 1
Find the area of the shaded region.


Solution:
Area of the shaded region = a b y d x = 0 4 ( 6 x x 2 ) d x = [ 6 x 2 2 x 3 3 ] 0 4 = [ 3 ( 4 ) 2 ( 4 ) 3 3 ] 0 = 26 2 3 unit 2


Example 2
Find the area of the shaded region.


Solution:
y = x -----(1)
x = 8yy2-----(2)
Substitute (1) into (2),
y = 8yy2
y2 – 7y = 0
y (y – 7) = 0
y = 0 or 7
From (1), x = 0 or 7
Therefore the intersection points of the curve and the straight line is (0, 0) and (7, 7).

Intersection point of the curve and y-axis is,
x = 8yy2
At y-axis, x = 0
0 = 8yy2
y (y – 8) = 0
y = 0, 8

Area of shaded region = (A1) Area of triangle + (A2) Area under the curve from y = 7 to y = 8.
= 1 2 × base × height + 7 8 x d y = 1 2 × ( 7 ) ( 7 ) + 7 8 ( 8 y y 2 ) d y = 49 2 + [ 8 y 2 2 y 3 3 ] 7 8 = 24 1 2 + [ 4 ( 8 ) 2 ( 8 ) 3 3 ] [ 4 ( 7 ) 2 ( 7 ) 3 3 ] = 24 1 2 + 85 1 3 81 2 3 = 28 1 6 unit 2

3.4b Laws of Definite Integrals


3.4b Laws of Definite Integrals



Example:
Given that 3 7 f ( x ) d x = 5 , find the values for each of the following:

(a) 3 7 6 f ( x ) d x (b) 3 7 [ 3 f ( x ) ] d x (c) 7 3 2 f ( x ) d x (d) 3 4 f ( x ) d x + 4 5 f ( x ) d x + 3 7 f ( x ) d x (e) 3 7 f ( x ) + 7 2 d x


Solution:
(a) 3 7 6 f ( x ) d x = 6 3 7 f ( x ) d x = 6 ( 5 ) = 30 (b) 3 7 [ 3 f ( x ) ] d x = 3 7 3 d x 3 7 f ( x ) d x = [ 3 x ] 3 7 5 = [ 3 ( 7 ) 3 ( 3 ) ] 5 = 7 (c) 7 3 2 f ( x ) d x = 3 7 2 f ( x ) d x = 2 3 7 f ( x ) d x = 2 ( 5 ) = 10 (d) 3 4 f ( x ) d x + 4 5 f ( x ) d x + 3 7 f ( x ) d x = 3 7 f ( x ) d x = 5 (e) 3 7 f ( x ) + 7 2 d x = 3 7 [ 1 2 f ( x ) + 7 2 ] d x = 3 7 1 2 f ( x ) d x + 3 7 7 2 d x = 1 2 3 7 f ( x ) d x + [ 7 x 2 ] 3 7 = 1 2 ( 5 ) + [ 7 ( 7 ) 2 7 ( 3 ) 2 ] = 5 2 + 14 = 16 1 2


Short Question 14 & 15


Question 14 (3 marks):
It is given that 5 ( 2x+3 ) n dx= p ( 2x+3 ) 5 +c , where c, n and p are constants.
Find the value of n and of p.

Solution:
5 ( 2x+3 ) n dx= 5 ( 2x+3 ) n dx = 5 ( 2x+3 ) n+1 ( n+1 )×2 +c = 5 2( 1n ) × 1 ( 2x+3 ) n1 +c = 5 2( 1n ) ( 2x+3 ) n1 +c Compare  5 2( 1n ) ( 2x+3 ) n1 with  p ( 2x+3 ) 5 n1=5 n=6 5 2( 1n ) =p 5 2( 16 ) =p 5 2( 5 ) =p p= 1 2



Question 15 (4 marks):
Diagram shows the curve y = g(x). The straight line is a tangent to the curve.
Diagram

Given g’(x) = –4x + 8, find the equation of the curve.


Solution:
Given g'( x )=4x+8 Maximum point when g'( x )=0 4x+8=0 4x=8 x=2 Thus, maximum point is ( 2,11 ). g'( x )=4x+8 g'( x ) = ( 4x+8 ) dx g( x )= 4 x 2 2 +8x+c g( x )=2 x 2 +8x+c Substitute ( 2,11 ) into g( x ): 11=2 ( 2 ) 2 +8( 2 )+c c=3 Thus, the equation of curve is g( x )=2 x 2 +8x+3

Long Question 10


Question 10 (10 marks):
Diagram shows a curve y = 2x2 – 18 and the straight line PQ which is a tangent to the curve at point K.

It is given that the gradient of the straight line PQ is 4.
(a) Find the coordinates of point K
(b) Calculate the area of the shaded region.

(c) When the region bounded by the curve, the x-axis and the straight line y = h is rotated through 180o about the y-axis, the volume generated is 65π unit3.
Find the value of h.

Solution: 
(a)
y=2 x 2 18 dy dx =4x Gradient of straight line PQ=4 4x=4 x=1 When x=1,  y=2 ( 1 ) 2 18=16 Coordinates of K=( 1,16 ).


(b)
At x-axis, y=0 2 x 2 18=0 2 x 2 =18 x 2 =9 x=±3 The curve cuts the x-axis at ( 3,0 ) and ( 3,0 ). Area of shaded region = Area of triangleArea under the curve = 1 2 ( 51 )( 16 ) 1 3 ydx =32 1 3 ( 2 x 2 18 )dx =32| [ 2 x 3 3 18x ] 1 3 | =32| ( 2 ( 3 ) 3 3 18( 3 ) )( 2 ( 1 ) 3 3 18( 1 ) ) | =32| ( 1854 2 3 +18 ) | =32| 18 2 3 | =3218 2 3 =13 1 3  units 2


(c)
Volume generated=65π π h 0 x 2 dy =65π π h 0 ( y 2 +9 )dx =65π y=2 x 2 18 x 2 = y 2 +9 [ y 2 4 +9y ] h 0 =65 0( h 2 4 +9h )=65 h 2 4 9h=65 h 2 +36h+260=0 ( h+10 )( h+26 )=0 h=10   or   h=26 ( rejected ) Thus, h=10


Long Question 9


Question 9 (10 marks):
Diagram shows the straight line 4y = x – 2 touches the curve x = y2 + 6 at point P.



Find
(a) the coordinates of P,
(b) the area of the shaded region,
(c) the volume of revolution, in terms of π, when the region bounded by the curve and the straight line x = 8 is revolved through 180o about the x-axis.


Solution:
(a)
4y=x2.........(1) x= y 2 +6.........(2) Substitute (2) into (1): 4y=( y 2 +6 )2 y 2 4y+4=0 ( y2 )( y2 )=0 y2=0 y=2 Substitute y=2 into (2): x= ( 2 ) 2 +6 x=10 Thus, P=( 10, 2 ).


(b)
At x-axis, y=0 4y=x2 0=x2 x=2 Area of shaded region = Area of triangleArea under the curve = 1 2 ( 102 )( 2 ) 6 10 ydx =8 6 10 x6 dx x= y 2 +6 y= x6 =8 6 10 ( x6 ) 1 2 dx =8 [ ( x6 ) 1 2 +1 1 2 +1 ] 6 10 =8 [ 2 ( x6 ) 3 2 3 ] 6 10 =8[ 2 ( 106 ) 3 2 3 2 ( 66 ) 3 2 3 ] =8 16 3 = 8 3  units 2


(c)
Volume of revolution =π 6 8 y 2 dx =π 6 8 ( x6 )dx x= y 2 +6 y 2 =x6 =π [ x 2 2 6x ] 6 8 =π[ ( 3248 )( 1836 ) ] =2π  units 3



Long Question 8


Question 8:
Diagram below shows the curve y= 4 x 2 and the straight line y = mx + c. The straight line y = mx + c is a tangent to the curve at (2, 1).

(a) Find the value of m and of c.

(b) Calculate the area of the shaded region.

(c) It is given that the volume generated when the region bounded by the curve, the x–axis and the straight lines x = 2 and x = h is revolved through 360o about the x-axis is 38π 81  unit 3 .
Find the value of h, such that h > 2.

Solution:
(a)
y= 4 x 2 =4 x 2 dy dx =8 x 3 = 8 x 3 At x=2, dy dx = 8 2 3 =1 Equation of tangent: y y 1 =m( x x 1 ) y1=1( x2 ) y=x+2+1 y=x+3 m=1, c=3


(b)
At x-axis, y=0 From the straight line y=x+3,x=3 Area of the shaded region =Area under the curveArea of triangle = 2 4 y dx 1 2 ×1×1 = 2 4 ( 4 x 2 ) dx 1 2 = [ 4 x 1 1 ] 2 4 1 2 = [ 4 x ] 2 4 1 2 =[ 4 4 ( 4 2 ) ] 1 2 = 1 2  unit 2


(c)
Volume generated= 38π 81 π 2 h y 2  dx = 38π 81 2 h ( 4 x 2 ) 2 d x= 38 81 2 h ( 16 x 4 )dx = 38 81 2 h ( 16 x 4 )dx = 38 81 [ 16 x 3 3 ] 2 h = 38 81 [ 16 3 x 3 ] 2 h = 38 81 16 3 h 3 ( 16 3 ( 2 ) 3 )= 38 81 16 3 h 3 = 16 24 38 81 16 3 h 3 = 16 81 3 h 3 =81 h 3 =27 h=3

Long Question 7


Question 7:
Diagram below shows a curve y= 1 4 x 2 +3 which intersects the straight line y = x + 6 at point A.


(a) Find the coordinates of A.
(b) Calculate
(i) the area of the shaded region M,
(ii) the volume generated, in terms of π, when the shaded region N is revolved 360o about the y-axis.

Solution:
(a)
y= 1 4 x 2 +3..........( 1 ) y=x+6..........( 2 ) Substitute (2) into (1), x+6= 1 4 x 2 +3 4x+24= x 2 +12 x 2 4x12=0 ( x+2 )( x6 )=0 x=2   or   x=6 ( rejected ) When x=2 y=2+6=4 Therefore, A=( 2,4 ).


(b)(i)
At x-axis, y=0 From y=x+6,x=6 Area of region M =Area of triangle+Area under the curve = 1 2 ×( 62 )×4+ 2 0 y dx =8+ 2 0 ( 1 4 x 2 +3 ) dx =8+ [ x 3 4( 3 ) +3x ] 2 0 =8+[ 0( ( 2 ) 3 12 +3( 2 ) ) ] =8+[ 0( 8 12 6 ) ] =8+[ 0( 20 3 ) ] =14 2 3  unit 2


(b)(ii)
At y-axis, x=0,  y= 1 4 ( 0 )+3 y=3 y= 1 4 x 2 +3 4y= x 2 +12 x 2 =4y12 Volume of N π 3 4 x 2 dy π 3 4 ( 4y12 )dy π 3 4 ( 2 y 2 12y )dy =π [ ( 2 y 2 12y ) ] 3 4 =π[ ( 2 ( 4 ) 2 12( 4 ) )( 2 ( 3 ) 2 12( 3 ) ) ] =π( 16+18 ) =2π  unit 3


Long Question 4


Question 4:
Diagram below shows a curve x = y2 – 1 which intersects the straight line 3y = 2x at point Q.


Calculate the volume generated when the shaded region is revolved 360o about the y-axis.


Solution:

x= y 2 1( 1 ) 3y=2x x= 3 2 y( 2 ) Substitute (2) into (1), 3 2 y= y 2 1 2 y 2 3y2=0 ( 2y+1 )( y2 )=0 y= 1 2    or   y=2


When y=2,x= 3 2 ( 2 )=3, Q=( 3, 2 ) I 1 ( Volume of cone ) = 1 3 π r 2 h= 1 3 π ( 3 ) 2 ( 2 ) =6π  unit 3 I 2 ( Volume of the curve ) π 1 2 x 2 dy π 1 2 ( y 2 1 ) 2 dy π 1 2 ( y 4 2 y 2 +1 )dy =π [ y 5 5 2 y 3 3 +y ] 1 2 =π[ ( 2 5 5 2 ( 2 ) 3 3 +2 )( 1 5 5 2 ( 1 ) 3 3 +1 ) ] =π( 46 15 8 15 ) = 38 15 π  unit 3  Volume generated = I 1 I 2                                  =6π 38 15 π                                  = 52 15 π  unit 3

Long Question 5


Question 5:
In Diagram below, the straight line WY is normal to the curve   y = 1 2 x 2 + 1 at B (2, 4). The straight line BQ is parallel to the y–axis.


Find
(a) the value of t,
(b) the area of the shaded region,
(c) the volume generated, in terms of π, when the region bounded by the curve, the y–axis
  and the straight line y = 4 is revolved through 360° about the y-axis.

Solution:
(a)
y= 1 2 x 2 +1 Gradient of tangent,  dy dx =2( 1 2 x )=x At point B dy dx =2 Gradient of normal,  m 2 = 1 2 40 2t = 1 2 8=2+t t=10


(b)
Area of the shaded region =Area under the curve + Area of triangle BQY = 0 2 ( 1 2 x 2 +1 )  dx+ 1 2 ( 102 )( 4 ) = [ x 3 6 +x ] 0 2 +16 =[ 8 6 +2 ]0+16 =19 1 3  unit 2


(c)
At yaxis, x=0, y= 1 2 ( 0 )+1=1 y= 1 2 x 2 +1,  x 2 =2y2 Volume generated  π x 2 dy =π 1 4 ( 2y2 )  dy =π [ y 2 2y ] 1 4 =π[ ( 168 )( 12 ) ] =9π  unit 3