Short Question 1 Posted on April 22, 2020 by user Question 1: Find the integral of each of the following . ( a ) ∫ ( 3 x 2 − 5 2 x 3 + 2 ) d x ( b ) ∫ x 2 ( x 5 + 2 x ) d x ( c ) ∫ 3 x 4 + 2 x x 3 d x ( d ) ∫ ( 7 + x ) ( 7 − x ) x 4 d x ( e ) ∫ ( 5 x − 1 ) 3 d x ( f ) ∫ 3 ( 4 x + 7 ) 8 d x Solution: (a) ∫ ( 3 x 2 − 5 2 x 3 + 2 ) d x = ∫ ( 3 x − 2 − 5 x − 3 2 + 2 ) d x = − 3 x − 1 + 5 x − 2 4 + 2 x + c = − 3 x + 5 4 x 2 + 2 x + c (b) ∫ x 2 ( x 5 + 2 x ) d x = ∫ ( x 7 + 2 x 3 ) d x = x 8 8 + 2 x 4 4 + c = x 8 8 + x 4 2 + c (c) ∫ 3 x 4 + 2 x x 3 d x = ∫ ( 3 x 4 x 3 + 2 x x 3 ) d x = ∫ ( 3 x + 2 x − 2 ) d x = 3 x 2 2 − 2 x + c (d) ∫ ( 7 + x ) ( 7 − x ) x 4 d x = ∫ ( 49 − x 2 x 4 ) d x = ∫ ( 49 x 4 − 1 x 2 ) d x = ∫ ( 49 x − 4 − x − 2 ) d x = 49 x − 3 − 3 + 1 x + c = − 49 3 x 3 + 1 x + c (e) ∫ ( 5 x − 1 ) 3 d x = ( 5 x − 1 ) 4 ( 4 ) ( 5 ) + c = 1 20 ( 5 x − 1 ) 4 + c (f) ∫ 3 ( 4 x + 7 ) 8 d x = ∫ 3 ( 4 x + 7 ) − 8 d x = 3 ( 4 x + 7 ) − 7 ( − 7 ) ( 4 ) + c = − 3 28 ( 4 x + 7 ) 7 + c
Integration as the Inverse of Differentiation Posted on April 22, 2020 by user 3.4c Integration as the Inverse of DifferentiationExample: Shows that d dx [ 2x+5 x 2 −3 ]= −2( x 2 +5x+3 ) ( x 2 −3 ) 2 Hence, find the value of ∫ 0 2 ( x 2 +5x+3 ) ( x 2 −3 ) 2 dx Solution: d dx [ 2x+5 x 2 −3 ]= ( x 2 −3 )( 2 )−( 2x+5 )( 2x ) ( x 2 −3 ) 2 = 2 x 2 −6−4 x 2 −10x ( x 2 −3 ) 2 = −2 x 2 −10x−6 ( x 2 −3 ) 2 = −2( x 2 +5x+3 ) ( x 2 −3 ) 2 ∫ 0 2 −2( x 2 +5x+3 ) ( x 2 −3 ) 2 dx = [ 2x+5 x 2 −3 ] 0 2 −2 ∫ 0 2 ( x 2 +5x+3 ) ( x 2 −3 ) 2 dx = [ 2x+5 x 2 −3 ] 0 2 ∫ 0 2 ( x 2 +5x+3 ) ( x 2 −3 ) 2 dx =− 1 2 [ ( 2( 2 )+5 2 2 −3 )−( 2( 0 )+5 0 2 −3 ) ] =− 1 2 [ 9−( − 5 3 ) ] =− 1 2 × 32 3 =− 16 3 =−5 1 3
3.6 Integration as the Summation of Volumes Posted on April 22, 2020 by user 3.6 Integration as the Summation of Volumes (1). The volume of the solid generated when the region enclosed by the curve y = f(x), the x-axis, the line x = a and the line x = b is revolved through 360° about the x-axis is given by V x = π ∫ a b y 2 d x (2). The volume of the solid generated when the region enclosed by the curve x = f(y), the y-axis, the line y = a and the line y = b is revolved through 360° about the y-axis is given by V y = π ∫ a b x 2 d y
Long Question 1 & 2 Posted on April 22, 2020 by user Question 1: A curve with gradient function 5 x − 5 x 2 has a turning point at (m, 9). (a) Find the value of m. (b) Determine whether the turning point is a maximum or a minimum point. (c) Find the equation of the curve. Solution: (a) d y d x = 5 x − 5 x 2 At turning point ( m , 9 ) , d y d x = 0. 5 m − 5 m 2 = 0 5 m 2 = 5 m m 3 = 1 m = 1 (b) dy dx =5x− 5 x 2 =5x−5 x −2 d 2 y d x 2 =5+ 10 x 3 When x=1, d 2 y d x 2 =15 (> 0) Thus, ( 1,9 ) is a minimum point. (c) y= ∫ ( 5x−5 x −2 ) dx y= 5 x 2 2 + 5 x +c At turning point ( 1,9 ), x=1 and y=9. 9= 5 ( 1 ) 2 2 + 5 1 +c c= 3 2 Equation of the curve: y= 5 x 2 2 + 5 x + 3 2 Question 2: A curve has a gradient function kx2– 7x, where k is a constant. The tangent to the curve at the point (1, 3 ) is parallel to the straight line y + x– 4 = 0. Find (a) the value of k, (b) the equation of the curve. Solution: (a) y + x – 4 = 0 y = – x + 4 m = –1 f ’(x) = kx² – 7x Given tangent to the curve at the point (1, 3) parallel to the straight line k (1)² – 7 (1) = –1 k – 7 = –1 k = 6 (b) f ' ( x ) = 6 x 2 − 7 x f ( x ) = ∫ ( 6 x 2 − 7 x ) d x f ( x ) = 6 x 3 3 − 7 x 2 2 + c 3 = 2 ( 1 ) 3 − 7 ( 1 ) 2 2 + c at point ( 1 , 3 ) c = 9 2 ∴ f ( x ) = 2 x 3 − 7 x 2 2 + 9 2
Short Question 5 – 7 Posted on April 22, 2020 by user Question 5: Given ∫ ( 6 x 2 +1 )dx=m x 3 +x +c, where m and c are constants, find (a) the value of m. (b) the value of c if ∫ ( 6 x 2 +1 )dx=13 when x=1. Solution: (a) ∫ ( 6 x 2 +1 )dx=m x 3 +x +c 6 x 3 3 +x+c=m x 3 +x+c 2 x 3 +x+c=m x 3 +x+c Compare the both sides, ∴ m=2 (b) ∫ ( 6 x 2 +1 )dx=13 when x=1. 2 ( 1 ) 3 +1+c=13 3+c=13 c=10 Question 6: It is given that ∫ 5 k g(x)dx=6 , and ∫ 5 k [ g( x )+2 ]dx =14, find the value of k. Solution: ∫ 5 k [ g( x )+2 ]dx =14 ∫ 5 k g( x )dx + ∫ 5 k 2dx =14 6+ [ 2x ] 5 k =14 2( k−5 )=8 k−5=4 k=9 Question 7: Given ∫ k 2 (4x+7)dx=28 , calculate the possible value of k. Solution: ∫ k 2 (4x+7)dx=28 [ 2 x 2 +7x ] k 2 =28 8+14−( 2 k 2 +7k )=28 22−2 k 2 −7k=28 2 k 2 +7k+6=0 ( 2k+3 )( k+2 )=0 k=− 3 2 or k=−2
Short Question 8 – 10 Posted on April 22, 2020 by user Question 8: Given y= 5x x 2 +1 and dy dx =g( x ), find the value of ∫ 0 3 2g( x )dx. Solution: Since dy dx =g( x ), thus y= ∫ g( x ) dx ∫ 0 3 2g( x )dx=2 ∫ 0 3 g( x )dx =2 [ y ] 0 3 =2 [ 5x x 2 +1 ] 0 3 =2[ 5( 3 ) 3 2 +1 −0 ] =2( 15 10 ) =3 Question 9: Find ∫ 5 k ( x+1 )dx, in terms of k. Solution: ∫ 5 k ( x+1 )dx=[ x 2 2 +x ] 5 k =( k 2 2 +k )−( 5 2 2 +5 ) = k 2 +2k 2 − 35 2 = k 2 +2k−35 2 Question 10: Given that= ∫ 2 5 g(x)dx=−2 . Find (a) the value of ∫ 5 2 g(x)dx, (b) the value of m if ∫ 2 5 [ g(x)+m( x ) ]dx=19 Solution: (a) ∫ 5 2 g(x)dx= − ∫ 2 5 g(x)dx =−( −2 ) =2 (b) ∫ 2 5 [ g(x)+m( x ) ]dx=19 ∫ 2 5 g(x)dx+m ∫ 2 5 xdx=19 −2+m [ x 2 2 ] 2 5 =19 m 2 [ x 2 ] 2 5 =21 m 2 [ 25−4 ]=21 21m=42 m=2
Short Question 11 – 13 Posted on April 22, 2020 by user Question 11: Given ∫ −2 3 g(x)dx=4 , and ∫ −2 3 h(x)dx=9 , find the value of (a) ∫ −2 3 5g(x)dx, (b) m if ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 Solution: (a) ∫ −2 3 5g(x)dx=5 ∫ −2 3 g(x)dx =5×4 =20 (b) ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 ∫ −2 3 g(x)dx+3 ∫ −2 3 h( x )dx+ ∫ −2 3 4mdx=12 4+3( 9 )+4m [ x ] −2 3 =12 4m[ 3−( −2 ) ]=−19 20m=−19 m=− 19 20 Question 12: (a) Find the value of ∫ −1 1 ( 3x+1 ) 3 dx. (b) Evaluate ∫ 3 4 1 2x−4 dx. Solution: a) ∫ −1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] −1 1 = [ ( 3x+1 ) 4 12 ] −1 1 = 1 12 [ 4 4 − ( −2 ) 4 ] = 1 12 ( 256−16 ) =20 (b) ∫ 3 4 1 2x−4 dx= ∫ 3 4 1 ( 2x−4 ) 1 2 dx = ∫ 3 4 ( 2x−4 ) − 1 2 dx = [ ( 2x−4 ) − 1 2 +1 1 2 ( 2 ) ] 3 4 = [ 2x−4 ] 3 4 =[ 2( 4 )−4 − 2( 3 )−4 ] =2− 2 Question 13: Given that y= x 2 2x−1 , show that dy dx = 2x( x−1 ) ( 2x−1 ) 2 . Hence, evaluate ∫ −2 2 x( x−1 ) 4 ( 2x−1 ) 2 dx . Solution: y= x 2 2x−1 dy dx = ( 2x−1 )( 2x )−x( 2 ) ( 2x−1 ) 2 = 4 x 2 −2x−2 x 2 ( 2x−1 ) 2 = 2 x 2 −2x ( 2x−1 ) 2 = 2x( x−1 ) ( 2x−1 ) 2 ( shown ) ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = [ x 2 2x−1 ] −2 2 1 8 ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ x 2 2x−1 ] −2 2 1 4 ∫ −2 2 x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ ( 2 2 2( 2 )−1 )−( ( −2 ) 2 2( −2 )−1 ) ] = 1 8 [ ( 4 3 )−( 4 −5 ) ] = 1 8 ( 32 15 ) = 4 15
Long Question 3 Posted on April 22, 2020 by user Question 3: The gradient function of a curve which passes through P(2, –14) is 6x² – 12x. Find (a) the equation of the curve, (b) the coordinates of the turning points of the curve and determine whether each of the turning points is a maximum or a minimum. Solution: (a) Given gradient function of a curve dy dx =6 x 2 −12x The equation of the curve, y= ∫ ( 6 x 2 −12x ) dx y= 6 x 3 3 − 12 x 2 2 +c y=2 x 3 −6 x 2 +c −14=2 ( 2 ) 3 −6 ( 2 ) 2 +c, at point P ( 2,−14 ) −14=−8+c c=−6 y=2 x 3 −6 x 2 −6 (b) dy dx =6 x 2 −12x At turning points, dy dx =0 6 x 2 −12x=0 6x( x−2 )=0 x=0, x=2 x=0, y=2 ( 0 ) 3 −6 ( 0 ) 2 −6=−6 x=2, y=2 ( 2 ) 3 −6 ( 2 ) 2 −6=−14 d 2 y d x 2 =12x−12 When x=0, d 2 y d x 2 =12( 0 )−12=−12 <0 ( 0,−6 ) is a maximum point. When x=2, d 2 y d x 2 =12( 2 )−12=12 >0 ( 2,−14 ) is a minimum point.
Long Question 6 Posted on April 22, 2020 by user Question 6: Diagram below shows part of the curve y = 2 ( 3 x − 2 ) 2 which passes through B (1, 2). (a) Find the equation of the tangent to the curve at the point B.(b) A region is bounded by the curve, the x-axis and the straight lines x = 2 and x = 3. (i) Find the area of the region. (ii) The region is revolved through 360° about the x–axis. Find the volume generated, in terms of p. Solution: (a) y = 2 ( 3 x − 2 ) 2 = 2 ( 3 x − 2 ) − 2 d y d x = − 4 ( 3 x − 2 ) − 3 ( 3 ) d y d x = − 12 ( 3 x − 2 ) 3 d y d x = − 12 ( 3 ( 1 ) − 2 ) 3 , x = 1 d y d x = − 12 y − 2 = − 12 ( x − 1 ) y − 2 = − 12 x + 12 y = − 12 x + 14 (b)(i) Area = ∫ 2 3 y d x = ∫ 2 3 2 ( 3 x − 2 ) 2 d x = ∫ 2 3 2 ( 3 x − 2 ) − 2 d x = [ 2 ( 3 x − 2 ) − 1 − 1 ( 3 ) ] 2 3 = [ − 2 3 ( 3 x − 2 ) ] 2 3 = [ − 2 3 [ 3 ( 3 ) − 2 ] ] − [ − 2 3 [ 3 ( 2 ) − 2 ] ] = − 2 21 + 1 6 = 1 14 unit 2 (b)(ii) Volume generated = π ∫ y 2 d x = π ∫ 2 3 4 ( 3 x − 2 ) 4 d x = π ∫ 2 3 4 ( 3 x − 2 ) − 4 d x = π [ 4 ( 3 x − 2 ) − 3 − 3 ( 3 ) ] 2 3 = π [ − 4 9 ( 3 x − 2 ) 3 ] 2 3 = π [ − 4 9 [ 3 ( 3 ) − 2 ] 3 ] − [ − 4 9 [ 3 ( 2 ) − 2 ] 3 ] = π ( − 4 3087 + 4 576 ) = 31 5488 π unit 3
3.5 Integration as the Summation of Areas Posted on April 22, 2020 by user 3.5 Integration as the Summation of Areas (A) Area of the region between a Curve and the x-axis. Area of the shaded region; A = ∫ a b y d x (B) Area of the region between a curve and the y-axis. Area of the shaded region; A = ∫ a b x d y (C) Area of the region between a curve and a straight line. Area of the shaded region; A = ∫ a b f ( x ) d x − ∫ a b g ( x ) d x