3.2 Integration by Substitution

3.2 Integration by Substitution
It is given that ( a x + b ) n d x , n 1.  


(A) Using the Substitution method,
Let u=ax+b Thus,  du dx =a    dx= du a

Example 1:
( 3x+5 ) 3 dx. Let u=3x+5     du dx =3 dx= du 3 ( 3x+5 ) 3 dx = u 3 du 3    substitute 3x+5=u and dx= du 3 = 1 3 u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c    substitute back  u=3x+5   = ( 3x+5 ) 4 12 +c


(B) Using Formula method

( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Example 2 (Formula method):

  ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Basic Integration

3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

Type 1:

a d x = a x + C Example 2 d x = 2 x + C

Type 2:

a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 2 3 x 5 d x = 2 3 x 5 d x = 2 3 ( x 4 4 ) + C = 2 3 ( x 4 4 ) + C = x 4 6 + C


Type 3:

( u+v )dx= udx± vdx u and v are functions in x Example 1 3 x 2 +2xdx= 3 x 2 dx+ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C


E x a m p l e 2 ( x + 2 ) ( 3 x + 1 ) d x = 3 x 2 + 7 x + 2 d x = 3 x 2 d x + 7 x d x + 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C


E x a m p l e 3 3 x 3 + x 2 x x d x = 3 x 2 + x 1 d x = 3 x 2 d x + x d x 1 d x = 3 x 3 3 + x 2 2 x + C = x 3 + x 2 2 x + C
 

Finding Equation Of A Curve From Its Gradient Function


3.3 Finding Equation of a Curve from its Gradient Function


Example 1:
Find the equation of the curve that has the gradient function  d y d x = 2 x + 8 and passes through the point (2, 3).

Solution:
y = ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C
y = x2 + 8x + C
3 = 22 +8(2) + C  (2, 3)
C = –17
Hence, the equation of the curve is
 y = x2 + 8x – 17



Example 2:
The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve.

Solution:
At the point where a curve has a minimum value,  d y d x = 0
d y d x = 0  
2x – 4 = 0
x = 2

Therefore minimum point = (2, 3).

d y d x = 2 x 4 y = ( 2 x 4 ) d x y = 2 x 2 2 4 x + C y = x 2 4 x + C

When x = 2, y = 3.
3 = 22 – 4(2) + c
c = 7

Hence, the equation of the curve is
y = x2 – 4x + 7

Definite Integrals

3.4a Definite Integral of f(x) from x=a to x=b



Example:
Evaluate each of the following.
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x (b) 0 2 ( 2 x + 1 ) 3 d x

Solution:
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x = [ 3 x 3 3 2 x 2 2 + 5 x ] 1 0 = [ x 3 x 2 + 5 x ] 1 0 = 0 [ ( 1 ) 3 ( 1 ) 2 + 5 ( 1 ) ] = 0 ( 1 1 5 ) = 7 (b) 0 2 ( 2 x + 1 ) 3 d x = [ ( 2 x + 1 ) 4 4 ( 2 ) ] 0 2 = [ ( 2 x + 1 ) 4 8 ] 0 2 = [ ( 2 ( 2 ) + 1 ) 4 8 ] [ ( 2 ( 0 ) + 1 ) 4 8 ] = 625 8 1 8 = 78


Short Question 2 – 4


Question 2:
Given that  Given that 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ,
find the values of m and n.

Solution:
4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 3 3 ( 1 ) + c = m ( 1 + x ) n + c 4 3 ( 1 + x ) 3 + c = m ( 1 + x ) n + c m = 4 3 , n = 3



Question 3:
Given  1 2 2g(x)dx=4 , and  1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m.

Solution:
1 2 [ m x + 3 g ( x ) ] d x = 15 1 2 m x d x + 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] 1 2 + 3 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 m ( 1 ) 2 2 ] + 3 2 1 2 2 g ( x ) d x = 15 2 m 1 2 m + 3 2 ( 4 ) = 15 given 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6



Question 4:
Given d d x ( 2 x 3 x ) = g ( x ) , find 1 2 g ( x ) d x .

Solution:
Given d d x ( 2 x 3 x ) = g ( x ) g ( x ) d x = 2 x 3 x Thus, 1 2 g ( x ) d x = [ 2 x 3 x ] 1 2 = 2 ( 2 ) 3 2 2 ( 1 ) 3 1 = 4 1 = 3