3.2 Integration by Substitution

3.2 Integration by Substitution
It is given that (ax+b)ndx,n1.  


(A) Using the Substitution method,
Let u=ax+bThus, dudx=a   dx=dua

Example 1:
(3x+5)3dx.Let u=3x+5   dudx=3dx=du3(3x+5)3dx=u3du3  substitute 3x+5=uand dx=du3=13u3du=13(u44)+c=13((3x+5)44)+c   substitute back u=3x+5  =(3x+5)412+c


(B) Using Formula method

(ax+b)n=(ax+b)n+1(n+1)a+cHence,(3x+5)3dx=(3x+5)44(3)+c=(3x+5)412+c

Example 2 (Formula method):

  (ax+b)n=(ax+b)n+1(n+1)a+cHence,(3x+5)3dx=(3x+5)44(3)+c=(3x+5)412+c

Basic Integration

3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

Type 1:

adx=ax+CExample2dx=2x+C

Type 2:

axndx=axn+1n+1+CExample12x3dx=2x44+C=x42+CExample223x5dx=23x5dx=23(x44)+C=23(x44)+C=x46+C


Type 3:

(u+v)dx=udx±vdxu and v are functions in xExample 13x2+2xdx=3x2dx+2xdx=3x33+2x22+C=3x33+2x22+C=x3+x2+C


Example2(x+2)(3x+1)dx=3x2+7x+2dx=3x2dx+7xdx+2dx=3x33+7x22+2x+C=x3+7x22+2x+C


Example33x3+x2xxdx=3x2+x1dx=3x2dx+xdx1dx=3x33+x22x+C=x3+x22x+C
 

Finding Equation Of A Curve From Its Gradient Function


3.3 Finding Equation of a Curve from its Gradient Function


Example 1:
Find the equation of the curve that has the gradient function  dydx=2x+8 and passes through the point (2, 3).

Solution:
y=(2x+8)y=2x22+8x+C
y = x2 + 8x + C
3 = 22 +8(2) + C  (2, 3)
C = –17
Hence, the equation of the curve is
 y = x2 + 8x – 17



Example 2:
The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve.

Solution:
At the point where a curve has a minimum value,  dydx=0
dydx=0 
2x – 4 = 0
x = 2

Therefore minimum point = (2, 3).

dydx=2x4y=(2x4)dxy=2x224x+Cy=x24x+C

When x = 2, y = 3.
3 = 22 – 4(2) + c
c = 7

Hence, the equation of the curve is
y = x2 – 4x + 7

Definite Integrals

3.4a Definite Integral of f(x) from x=a to x=b



Example:
Evaluate each of the following.
  (a)01(3x22x+5)dx(b)20(2x+1)3dx

Solution:
  (a)01(3x22x+5)dx=[3x332x22+5x]01=[x3x2+5x]01=0[(1)3(1)2+5(1)]=0(115)=7(b)20(2x+1)3dx=[(2x+1)44(2)]20=[(2x+1)48]20=[(2(2)+1)48][(2(0)+1)48]=625818=78


Short Question 2 – 4


Question 2:
Given that  Given that4(1+x)4dx=m(1+x)n+c,
find the values of m and n.

Solution:
4(1+x)4dx=m(1+x)n+c4(1+x)4dx=m(1+x)n+c4(1+x)33(1)+c=m(1+x)n+c43(1+x)3+c=m(1+x)n+cm=43,n=3



Question 3:
Given 212g(x)dx=4, and 21[mx+3g(x)]dx=15.Find the value of constant m.

Solution:
21[mx+3g(x)]dx=1521mxdx+213g(x)dx=15[mx22]21+321g(x)dx=15[m(2)22m(1)22]+32212g(x)dx=152m12m+32(4)=15given212g(x)dx=432m+6=1532m=9m=9×23m=6



Question 4:
Givenddx(2x3x)=g(x), find21g(x)dx.

Solution:
Givenddx(2x3x)=g(x)g(x)dx=2x3xThus,21g(x)dx=[2x3x]21=2(2)322(1)31=41=3