3.2 Integration by Substitution Posted on April 22, 2020 by user 3.2 Integration by Substitution It is given that ∫ ( a x + b ) n d x , n ≠ − 1. (A) Using the Substitution method, Let u=ax+b Thus, du dx =a ∴dx= du a Example 1: ∫ ( 3x+5 ) 3 dx. Let u=3x+5 du dx =3 dx= du 3 ∫ ( 3x+5 ) 3 dx = ∫ u 3 du 3 ← substitute 3x+5=u and dx= du 3 = 1 3 ∫ u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c ← substitute back u=3x+5 = ( 3x+5 ) 4 12 +c (B) Using Formula method ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c Example 2 (Formula method): ∫ ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ∫ ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c
Basic Integration Posted on April 22, 2020 by user 3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms Type 1: ∫ a d x = a x + C Example ∫ 2 d x = 2 x + C Type 2: ∫ a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 ∫ 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 ∫ 2 3 x 5 d x = ∫ 2 3 x − 5 d x = 2 3 ( x − 4 − 4 ) + C = 2 3 ( x − 4 − 4 ) + C = x − 4 − 6 + C Type 3: ∫ ( u+v )dx= ∫ udx± ∫ vdx u and v are functions in x Example 1 ∫ 3 x 2 +2xdx= ∫ 3 x 2 dx+ ∫ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C E x a m p l e 2 ∫ ( x + 2 ) ( 3 x + 1 ) d x = ∫ 3 x 2 + 7 x + 2 d x = ∫ 3 x 2 d x + ∫ 7 x d x + ∫ 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C E x a m p l e 3 ∫ 3 x 3 + x 2 − x x d x = ∫ 3 x 2 + x − 1 d x = ∫ 3 x 2 d x + ∫ x d x − ∫ 1 d x = 3 x 3 3 + x 2 2 − x + C = x 3 + x 2 2 − x + C
Finding Equation Of A Curve From Its Gradient Function Posted on April 22, 2020 by user 3.3 Finding Equation of a Curve from its Gradient Function Example 1: Find the equation of the curve that has the gradient function d y d x = 2 x + 8 and passes through the point (2, 3). Solution: y = ∫ ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C y = x2 + 8x + C 3 = 22 +8(2) + C (2, 3) C = –17 Hence, the equation of the curve is y = x2 + 8x – 17 Example 2: The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve. Solution: At the point where a curve has a minimum value, d y d x = 0 d y d x = 0 2x – 4 = 0 x = 2 Therefore minimum point = (2, 3). d y d x = 2 x − 4 y = ∫ ( 2 x − 4 ) d x y = 2 x 2 2 − 4 x + C y = x 2 − 4 x + C When x = 2, y = 3. 3 = 22 – 4(2) + c c = 7 Hence, the equation of the curve is y = x2 – 4x + 7
Definite Integrals Posted on April 22, 2020 by user 3.4a Definite Integral of f(x) from x=a to x=b Example: Evaluate each of the following. (a) ∫ − 1 0 ( 3 x 2 − 2 x + 5 ) d x (b) ∫ 0 2 ( 2 x + 1 ) 3 d x Solution: (a) ∫ − 1 0 ( 3 x 2 − 2 x + 5 ) d x = [ 3 x 3 3 − 2 x 2 2 + 5 x ] − 1 0 = [ x 3 − x 2 + 5 x ] − 1 0 = 0 − [ ( − 1 ) 3 − ( − 1 ) 2 + 5 ( − 1 ) ] = 0 − ( − 1 − 1 − 5 ) = 7 (b) ∫ 0 2 ( 2 x + 1 ) 3 d x = [ ( 2 x + 1 ) 4 4 ( 2 ) ] 0 2 = [ ( 2 x + 1 ) 4 8 ] 0 2 = [ ( 2 ( 2 ) + 1 ) 4 8 ] − [ ( 2 ( 0 ) + 1 ) 4 8 ] = 625 8 − 1 8 = 78
Short Question 2 – 4 Posted on April 22, 2020 by user Question 2: Given that Given that ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c , find the values of m and n. Solution: ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ∫ 4 ( 1 + x ) − 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) − 3 − 3 ( 1 ) + c = m ( 1 + x ) n + c − 4 3 ( 1 + x ) − 3 + c = m ( 1 + x ) n + c m = − 4 3 , n = − 3 Question 3: Given ∫ −1 2 2g(x)dx=4 , and ∫ −1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m. Solution: ∫ − 1 2 [ m x + 3 g ( x ) ] d x = 15 ∫ − 1 2 m x d x + ∫ − 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] − 1 2 + 3 ∫ − 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 − m ( − 1 ) 2 2 ] + 3 2 ∫ − 1 2 2 g ( x ) d x = 15 2 m − 1 2 m + 3 2 ( 4 ) = 15 ← given ∫ − 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6 Question 4: Given d d x ( 2 x 3 − x ) = g ( x ) , find ∫ 1 2 g ( x ) d x . Solution: Given d d x ( 2 x 3 − x ) = g ( x ) ∫ g ( x ) d x = 2 x 3 − x Thus, ∫ 1 2 g ( x ) d x = [ 2 x 3 − x ] 1 2 = 2 ( 2 ) 3 − 2 − 2 ( 1 ) 3 − 1 = 4 − 1 = 3