Short Question 1 – 3



Question 1
:
A group of 4 men and 3 ladies are to be seated in a row for a photographing session. If the men and ladies want to be seated alternately (man-lady-man-lady...), calculate the number of different arrangements.

Solution:
The arrangements of 4 men and 3 ladies to be seated alternately are as follow:

M    L    M        M    L    M

The number of ways to arrange the seat for 4 men = 4!

The number of ways to arrange the seat for 3 ladies = 3!

Total number of different arrangements for men and ladies = 4! × 3! = 144



Question 2:
Ahmad has 6 durians, 5 watermelons and 2 papayas. If he wants to arrange these fruits in a row and the fruits of the same kind have to be grouped together, calculate the number of different arrangements. The sizes of the fruits are different.

Solution:
The number of ways to arrange 3 groups of fruits that are same kind = 3!

DDDDDD      WWWWW      PP  

The number of ways to arrange 6 durians = 6!
The number of ways to arrange 5 watermelons = 5!
The number of ways to arrange 2 papayas = 2!

Therefore, the number of ways to arrange the fruits with same kind of fruits was grouped together
= 3! × 6! × 5! × 2!
= 1036800



Question 3:
Calculate the number of arrangements, without repetitions, of the letters from the word `SOMETHING' with the condition that they must begin with a vowel.

Solution:
Arrangement of letters begin with vowel O, M and I= 3P1Arrangement for the rest of the letters7!Number of arrangements 3P1×7!=15120

6.3 Combinations


6.3 Combinations
(1) The number of combinations of r objects chosen from n different objects is given by :
nCr=n!r!(nr)!
(2) A combination of r objects chosen from n different objects is a selection of a set of r objects chosen from n objects. The order of the objects in the chosen set is not taken into consideration.
Note:(i)nC0=1(ii)nCn=1(iii)nCr=nCnr

Example 1:
Calculate the value of 7C27C2=7!(72)! ×2!=7!5! ×2!=7 ×6 ×5!5! ×2!=7×62×1=21


Calculator Computation: 





Example 2:

There are 6 marbles, each with different colour, which are to be divided equally between 2 children. Find the number of different ways the division of the marbles can be done.
 
Solution:
Number of ways giving 3 marbles to the first child =  6C3
 
Number of ways giving the remaining 3 marbles =  3C3
 
So, the number of different ways the division of the marbles
  =6C3×3C3=20×1=20

6.1 Permutations Part 2


(C) Permutation of n Different Objects, Taken r at a Time

1. The number of permutations of n different objects, taken r at a time is given by:

 
2.  A permutation of n different objects, taken r at a time, is an arrangement of a set of r objects chosen from n objects. The order of the objects in the chosen set is taken into consideration.
 
3. The number of permutations of n different objects, taken all at a time, is:




Example 1:
Evaluate each of the following.
(a)5P2(b)7P3(c)9P4

Solution:
(a)5P2=5!(52)!=5!3!=5×4×3!3!=5×4=20(b)7P3=7!(73)!=7!4!=7×6×5×4!4!=7×6×5=210(c)9P4=9!(94)!=9!5!=9×8×7×6×5!5!=9×8×7×6=3024

Calculator Computation: 




Short Question 5 – 8


Question 4:
A committee that consists of 6 members is to be selected from 5 teachers and 4 students. Find the number of different committees that can be formed if
(a) there is no restriction,
(b) the number of teachers must exceed the number of students.

Solution:

(a)
Total number of committees = 5 + 4 = 9
6 members to be selected from 9 committees with no restriction
= 9C6=84

(b)
If the number of teachers must exceed thenumber of students, the combination= 4 teachers 2 students + 5 teachers 1 student=5C4×4C2+5C5×4C1=30+4=34


Question 5:
A school prefect committee that consists of 6 persons is to be chosen from 6 Malays, 5 Chinese and 4 Indians. Calculate the number of different committees that can be formed if the number of Malays, Chinese and Indians must be equal.

Solution:
Number of different committees that can be formed for 2 Malays, 2 Chinese and 2 Indians
=6C2×5C2×4C2=900


Question 6:
There are 10 different flavour candies in a plastic bag.
Find
(a) the number of ways 3 candies can be chosen from the plastic bag.
(b) the number of ways at least 8 candies can be chosen from the plastic bag.

Solution:

(a)
Number of ways choosing 3 candies out of 10 candies
=10C3=120

(b)
Number of ways choosing 8 candies =   =10C8
Number of ways choosing 9 candies = 10C9
Number of ways choosing 10 candies = 10C10

Hence, number of ways of choosing at least 8 candies
=10C8+10C9+10C10=56


5.6d Solving Trigonometric Equations (Involving Addition Formulae And Double Angle Formulae)

(D) Solving Trigonometric Equations (Involving Addition Formulae and Double Angle Formulae)

Example 1 (Addition Formulae):
Solve the following equation for 0o≤ 360o:
(a) sin ( x – 25o) = 3 sin ( x + 25o)
(b) 3 cos ( 2x + 10o) = 2   

Solution:  
(a)
sin ( x – 25o) = 3 sin ( x + 25o)   
sin x cos 25o – cos x sin 25o = 3 (sin x cos 25o + cos x sin 25o)
sin x cos 25o – cos x sin 25o = 3 sin x cos 25o + 3 cos x sin 25o
– sin x cos 25o = 4 cos x sin 25o
sinxcosx=4sin252cos25
tan x = – 2 tan 25o
tan x = – 2 (0.4663)
tan x = – 0.9326
basic angle x = 43o
The reference angles of  x = 43o are in the second and fourth quadrants.
Hence, x = 180o – 43o, 360o – 43o
x = 137o , 317o

(b)
3 cos ( 2x + 10o) = 2   ← (Take the angles in the range of  0ox ≤ 720owhich in 2 complete revolutions)
cos ( 2x + 10o) = 
basic angle ( 2x + 10o) = 48.19o
2x + 10o = 48.19o, 360o – 48.19o , 360o + 48.19o, 720o – 48.19o  
2x + 10o = 48.19o, 311.81o , 408.19o, 671.81o
2x = 38.19o, 301.81o , 398.19o, 661.81o
x = 19.10o, 150.91o , 199.10o, 330.91o


Example 2 (Double Angle):
Find all the angles that satisfy the equation 5 cos 2+ 9 sin A = 7, 
0° < A < 360°.
 
Solution:  
5 cos 2A + 9 sin A = 7
5 (1 – 2 sin2A) + 9 sin A = 7   ← (substitution of cos 2A = 1 – 2 sin²A is used. Then the whole equation will be in terms of sin A)
5 – 10 sin2A + 9 sin A – 7 = 0
– 10 sin2A + 9 sin A – 2 = 0
10 sin2A – 9 sin A + 2 = 0
(2 sin A – 1)(5 sin A – 2) = 0 ← (Factorise)
sin A = ½ = 0.5    or   sin A= 25 = 0.4
When sin A = 0.5,   
Basic angle = 30º
A = 30º, 180º – 30º
A = 30º, 150º
When sin A = 0.4,   
Basic angle = 23.58º
A = 23.58º, 180º – 23.58º
A = 23.58º, 156.42º
Hence A = 23.58º, 30º, 150º, 156.42º.


Example 3 (Double Angle):
Find all the possible values of θ between 0 and 2π rad for the equation sin 2θ = sin θ
 
Solution:  
sin 2θ = sin θ
2 sin θ cos θ = sin θ   ←  (sin 2θ = 2 sin θ cos θ)
2 sin θ cos θ – sin θ = 0
sin θ (2 cos θ – 1) = 0   ← (Factorise)
sin θ = 0    or   2 cos θ – 1 = 0
When sin θ = 0
θ = 0, π, 2π
When 2 cos θ – 1= 0
cos θ = ½
θ=13π,53πHence,θ=0,13π,π,53π,2π.


Short Question 1 – 3


Question 1:
Solve the equation 3 cos 2A = 8 sin A – 5 for 0°  A ≤ 360°.

Solution:

3 cos 2A = 8 sin A – 5
3(1–2 sin2 A) = 8 sin A – 5
3 – 6 sin2 A = 8 sin A – 5
6 sin2 A + 8 sin A – 8 = 0
3 sin2 A + 4 sin A – 4 = 0
(3 sin A – 2)(sin A + 2) = 0  ←( Factorise the equation )
3 sin A – 2 = 0
sinA=23(sin A is positive in the 1st and 2nd quadrants.)
A = 41°49’, 138°11’
Or
sin A + 2 = 0
sin A = –2 (no solution)

Hence A = 41°49’, 138°11’.



Question 2:
Solve the equation 2 cos 2x – cos x – 1 = 0 for 0°  x ≤ 360°.

Solution:

2 cos 2x – cos x – 1 = 0
2 (2 cos2 x – 1) – cos x – 1 = 0
4 cos2 x– 2 – cos x – 1 = 0
4 cos2 x– cos x – 3 = 0
(4 cos x + 3)(cos x – 1) = 0
cos x =  34
basic angle = 41°24’
x = 138°36’, 221°24’
or
cos x = 1,
x = 0°, 360°

Hence x = 0°, 138°36’, 221°24’, 360°



Question 3:
Solve the equation 6 sec² x – 13 tan x = 0, 0°   x  360°.

Solution:
6 sec² x – 13 tan = 0
6 (1 + tan²x) – 13 tan x = 0
6 tan²x – 13 tan x + 6 = 0
(3 tan x – 2)(2 tan x – 3) = 0
tan x = 2/3   or   tan x = 3/2

tan x = 2/3
Basic angle = 33.69°
x = 33.69°, 180° + 33.69°
x = 33.69°, 213.69° 
Or
tan x = 3/2
Basic angle = 56.31°
x = 56.31°, 180° + 56.31°
x = 56.31°, 236.31°

Hence x = 33.69°, 56.31°, 213.69°, 236.31°. 


Short Question 7 & 8


Question 7:
It is given that   sinA=513andcosB=45 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tanA=512


(b)
sin(A+B)=sinAcosB+cosAsinBsin(A+B)=(513)(45)+(1213)(35)cosA=1213sinB=35sin(A+B)=4133665sin(A+B)=1665


(c)
cos(AB)=cosAcosB+sinAsinBcos(AB)=(1213)(45)+(513)(35)cos(AB)=3365



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem,Adjacent side=12p2=1p2


(a)

tanA=p1p2tan is negative atsecond quadrant


(b)
cosA=1p2cosis negative atsecond quadrant


(c)
sinA=2sinAcosAsinA=2(p)(1p2)sinA=2p1p2

Short Question 11 – 14


Question 11:
Prove the identitycos2x1sinx=1+sinx

Solution:

LHS=cos2x1sinx=1sin2x1sinxsin2x+cos2x=1=(1+sinx)(1sinx)1sinx=1+sinx=RHSProven



Question 12:
Prove the identitysin2xcos2x=tan2x1tan2x+1

Solution:

RHS=tan2x1tan2x+1=sin2xcos2x1sin2xcos2x+1tanx=sinxcosx=sin2xcos2xcos2xsin2x+cos2xcos2x=sin2xcos2xsin2x+cos2x=sin2xcos2xsin2x+cos2x=1=LHSProven


Question 13:
Prove the identitytan2θsin2θ=tan2θsin2θ

Solution:

LHS=tan2θsin2θ=sin2θcos2θsin2θ=sin2θsin2θcos2θcos2θ=sin2θ(1cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=RHSProven



Question 14:
Prove the identity cosec2θ(sec2θtan2θ)1=cot2θ

Solution:

LHS=cosec2θ(sec2θtan2θ)1=cosec2θ(1)1tan2θ+1=sec2θsec2θtan2θ=1=cosec2θ1=cot2θ1+cot2θ=cosec2θcosec2θ1=cot2θ=RHSProven


5.6b Solving Trigonometric Equation (Factorization)

5.6b Solving Trigonometric Equation (Factorization)
 
Example:
Find all the angles that satisfy each of the following equations for £ £ 360°.
(a)  cotx=2cosx
(b)  3secx=4cosx  
(c)  16tanx=cotx

Solution:
(a)
cotx=2cosxcosxsinx=2cosxcosx=2cosxsinxcosx+2sinxcosx=0cosx(1+2sinx)=0cosx=0x=90,2701+2sinx=0sinx=12Basic=30x=(180+30),(36030)x=210,330x=90,210,270,330

(b)
3secx=4cosx3cosx=4cosx3=4cos2xcos2x=34cosx=±32Basic=30x=30,(18030),(180+30),(36030)x=30,150,210,330

(c)
16tanx=cotx16tanx=1tanxtan2x=116tanx=±14Basic=14.04x=14.04,(18014.04),(180+14.04),(36014.04)x=14.04,165.96,194.04,345.96


5.6c Solving Trigonometric Equation (Form Quadratic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx)

(C) Solving Trigonometric Equation (Form Quadratic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx)

Example:
Find all the angles between 0° and 360° that satisfy each of the following equations.
(a) 3 sin² x – 2 sin x – 1 = 0
(b)  2 sin x = cosec x + 1
(c) 5 sin² x = 2 (1 + cos x)
(d) 2 sec x = 1 + cos x
(e)  2 cot² x + 8 = 7 cosec x

Solution:
(a) 
3 sin² x – 2 sin x – 1 = 0
(3 sin x + 1)(sin x – 1) = 0
sin x = –, sin x = 1
sin x = –
basic angle = 19.47°
x = 180° + 19.47°, 360° – 19.47°
x = 199.47°, 340.53
sin x = 1, x = 90°
Hence x = 90°, 199.47°, 340.53°

(b)
 
2 sin x = cosec x + 1
2sinx=1sinx+1
2 sin ² x = 1 + sin x
2 sin ² x – sin x – 1 =0
(2 sin x + 1)(sin x – 1) = 0
sin x = –½, sin x = 1
sin x = –½
basic angle = 30°
x = 180° + 30°, 360° – 30°
x = 210°, 330°
sin x = 1, x = 90°
Hence x = 90°, 210°, 330°

(c)

5 sin² x = 2 (1 + cos x)
5 (1 – cos² x) = 2 + 2 cos x
5 – 5 cos² x – 2 – 2 cos x = 0
– 5 cos² x – 2 cos x + 3 = 0
5 cos² x + 2 cos x – 3 = 0
(5 cos x – 3)(cos x + 1) = 0
cosx=35,cosx=1cosx=35
basic angle = 53.13°
x = 53.13°, 360° – 53.13°
x = 53.13°, 306.87°
cos x = – 1
x = 180°
Hence x = 53.13°, 180°, 306.87°

(d)
 
2 sec x = 1 + cos x
2cosx=1+cosx
2 = cos x + cos² x
cos² x + cos x – 2 = 0
(cos x – 1)(cos x + 2) = 0
cos x = 1
x = 0°, 360°
cos x = –2 (not accepted)
Hence x = 0°, 360°

(e)
2 cot² x + 8 = 7 cosec x
2 (cosec² x – 1) + 8 = 7 cosec x
2 cosec² x – 2 – 7 cosec x + 8 = 0
2 cosec2x – 7 cosec x + 6 = 0
(2 cosec x – 3)(cosec x – 2) = 0
cosecx=32,cosecx=2sinx=23,sinx=12sinx=23basic angle =41.81x=41.81,18041.81sinx=12basic angle = 30x=30,18030Hencex=30,41.81,138.19,150