5.5.1 Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 1) Posted on April 22, 2020 by user Example 2: Prove each of the following trigonometric identities. (a) 1 + cos 2 x sin 2 x = cot x (b) cot A sec 2 A = cot A + tan 2 A (c) s i n x 1 − c o s x = cot x 2 Solution: (a) L H S = 1 + cos 2 x sin 2 x = 1 + ( 2 cos 2 x − 1 ) 2 sin x cos x = 2 cos 2 x 2 sin x cos x = cos x sin x = cot x = R H S (proven) (b) R H S = cot A + tan 2 A = cos A sin A + sin 2 A cos 2 A = cos A cos 2 A + sin A sin 2 A sin A cos 2 A = cos A ( cos 2 A − sin 2 A ) + sin A ( 2 sin A cos A ) sin A cos 2 A = cos 3 A − cos A sin 2 A + 2 sin 2 A cos A sin A cos 2 A = cos 3 A + cos A sin 2 A sin A cos 2 A = cos A ( cos 2 A + sin 2 A ) sin A cos 2 A = cos A sin A cos 2 A ← sin 2 A + cos 2 A = 1 = ( cos A sin A ) ( 1 cos 2 A ) = cot A sec 2 A (c) L H S = s i n x 1 − c o s x = 2 s i n x 2 cos x 2 1 − ( 1 − 2 s i n 2 x 2 ) ← sin x = 2 s i n x 2 cos x 2 , cos x = 1 − 2 sin 2 x 2 = 2 s i n x 2 cos x 2 2 s i n 2 x 2 = cos x 2 s i n x 2 = cot x 2 = R H S (proven)
5.1 Positive and Negative Angles Posted on April 22, 2020 by user 5.1 Positive and Negative Angles 1. Positive angles are angles measure in an anticlockwise rotate from the positive x-axis about the origin, O. 2. Negative angles are angles measured in a clockwise rotation from the positive x-axis about the origin O. 3. One complete revolution is 360° or 2π radians. Example: Show each of the following angles on a separate diagram and state the quadrant in which the angle is situated. (a) 410° (b) 890° (c) 22 9 π radians (d) 10 3 π radians (e) –60o (f) –500° (g)−3 1 4 π radians Solution: (a) 410° = 360° + 50° Based on the above circular diagram, the positive angle of 410° is in the first quadrant. (b) 890° = 720° + 170° Based on the above circular diagram, the positive angle of 890° is in the second quadrant. (c) 22 9 π rad = ( 2 π + 4 9 π ) rad = 360 o + 80 o Based on the above circular diagram, the positive angle of 22 9 π radians is in the first quadrant. (d) 10 3 π rad = ( 3 π + 1 3 π ) rad = 540 o + 60 o Based on the above circular diagram, the positive angle of 10 3 π radians is in the third quadrant. (e) Based on the above circular diagram, the negative angle of –60° is in the fourth quadrant. (f) –500° = –360° – 140° Based on the above circular diagram, the negative angle of –500° is in the third quadrant. (g) − 3 1 4 π rad = ( − 3 π − 1 4 π ) rad = − 540 o − 45 o Based on the above circular diagram, the negative angle of −3 1 4 π radians is in the second quadrant.
5.2.2 Six Trigonometric Functions of Any Angle Posted on April 22, 2020 by user 5.2b Six Trigonometric Functions of Any Angle (B) Special Angles (1) Value of Special Angle 30° and 60° (a)sin 30 o = 1 2 (b)cos 30 o = 3 2 (c)tan 30 o = 1 3 (d)sin 60 o = 3 2 (e)cos 60 o = 1 2 (f)tan 60 o = 3 (2) Value of Special Angle 45° (a)sin 45 o = 1 2 (b)cos 45 o = 1 2 (c)tan 45 o =1 (3) Value of Special Angle 0°, 90°, 180°, 270°, 360° (a) y = sin x x 0o 90o 180o 270o 360o sin 0 1 0 -1 0 (b) y = cos x (c) y = tan x x 0o 90o 180o 270o 360o tan 0 ∞ 0 ∞ 0
Short Question 4 – 6 Posted on April 22, 2020 by user Question 4: Solve the equation 3 sin A cos A – cos A = 0 for 0° ≤ A ≤ 360°. Solution: 3 sin A cos A – cos A = 0 cos A (3 sin A – 1) = 0 cos A = 0 or sin A = ⅓ cos A = 0 A = 90°, 270° sin A = ⅓ Basic angle = 19°28' A = 19°28', 180° – 19°28' A = 19°28', 160°32' Hence A = 19°28', 90°, 160°32', 270°. Question 5: Solve the equation 4 sin (x – π) cos (x – π) = 1 for 0o ≤ x ≤ 360o. Solution: 4 sin (x – π) cos (x – π) = 1 2 [2 sin (x – π) cos (x – π)] = 1 2 sin (x – π) cos (x – π) = ½ sin 2(x – π) = ½ ← (sin 2x= 2 sinx cosx) sin 2(x – 180o) = ½ ← (π rad = 180o) sin (2x – 360o) = ½ sin 2x cos 360o – cos 2x sin 360o = ½ sin 2x (1) – cos 2x (0) = ½ ← (cos 360o = 1, sin 360o = 0) sin 2x = ½ basic angle = 30o ← (special angle, sin 30o= ½) 2x = 30o, 150o, 390o, 510o x = 15o, 75o, 195o, 255o
Long Question 1 & 2 Posted on April 22, 2020 by user Question 1: (a) Sketch the graph of y = cos 2x for 0° ≤ x ≤ 180°. (b) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 2 sin 2 x=2− x 180 for 0° ≤ x ≤ 180°. Solution: (a)(b) 2 sin 2 x=2− x 180 1−2 sin 2 x=1−( 2− x 180 ) cos2x= x 180 −1 y= x 180 −1 x=0, y=−1 x=180, y=0 Number of solutions = 2 Question 2: (a) Sketch the graph of y= 3 2 cos2x for 0≤x≤ 3 2 π. (b) Hence, using the same axes, sketch a suitable straight line to find the number of solutions to the equation 4 3π x−cos2x= 3 2 for 0≤x≤ 3 2 π State the number of solutions. Solution: (a)(b) 4 3π x−cos2x= 3 2 cos2x= 4 3π x− 3 2 3 2 cos2x= 3 2 ( 4 3π x− 3 2 ) y= 2 π x− 9 4 To sketch the graph of y= 2 π x− 9 4 x=0, y=− 9 4 x= 3π 2 , y= 3 4 Number of solutions =Number of intersection points = 3
5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A Posted on April 22, 2020 by user 5.5 Formulae of sin (A ± B), cos (A ± B), tan (A ± B), sin 2A, cos 2A, tan 2A (A) Compound Angles Formulae: • sin ( A ± B ) = sin A cos B ± cos A sin B • cos ( A ± B ) = cos A cos B ∓ sin A sin B • tan ( A ± B ) = tan A ± tan B 1 ∓ tan A tan B (B) Double Angle Formulae: sin 2A = 2 sin A cos A cos 2A = cos2 A – sin2 A cos 2A = 2 cos2 A – 1 cos 2A = 1 – 2 sin2 A tan 2 A = 2 tan A 1 − tan 2 A (C) Half Angle Formulae: • sinA=2sin A 2 cos A 2 • cosA= sin 2 A 2 − cos 2 A 2 cosA=2 cos 2 A 2 −1 cosA=1−2 cos 2 A 2 • tanA= 2tan A 2 1− tan 2 A 2 5.5.1 Proving Trigonometric Identities using Addition Formula and Double Angle Formulae Example 1: Prove each of the following trigonometric identities. (a) sin( A+B )−sin( A−B ) cosAcosB =2tanB (b) cos( A+B ) sinAcosB =cotA−tanB (c) tan( A+ 45 o )= sinA+cosA cosA−sinA Solution: (a) LHS = sin( A+B )−sin( A−B ) cosAcosB = ( sinAcosB+cosAsinB )−( sinAcosB−cosAsinB ) cosAcosB = 2 cosA sinB cosA cosB = 2sinB cosB =2tanB=RHS (proven) (b) L H S = cos ( A + B ) sin A cos B = cos A cos B − sin A sin B sin A cos B = cos A cos B sin A cos B − sin A sin B sin A cos B = cos A sin A − sin B cos B = cot A − tan B = R H S (proven) (c) L H S = tan ( A + 45 o ) = t a n A + tan 45 o 1 − t a n A tan 45 o = t a n A + 1 1 − t a n A ← tan 45 o = 1 = sin A cos A + 1 1 − sin A cos A = sin A + cos A cos A × cos A cos A − sin A = sin A + cos A cos A − sin A = R H S (proven)
Short Question 15 – 18 Posted on April 22, 2020 by user Question 15: Prove the identity 2 cos 2 A + 1 = s e c 2 A Solution: LHS = 2 cos 2 A + 1 = 2 ( 2 cos 2 A − 1 ) + 1 ← cos 2 A = 2 cos 2 A − 1 = 2 2 cos 2 A = 1 cos 2 A = s e c 2 A = RHS ∴ Proven Question 16: Prove the identity 2 tan A 2 − s e c 2 A = tan 2 A Solution: LHS = 2 tan A 2 − s e c 2 A = 2 tan A 2 − ( tan 2 A + 1 ) ← tan 2 A + 1 = s e c 2 A = 2 tan A 1 − tan 2 A = tan 2 A = RHS ∴ Proven Question 17: Prove the identity tan x + cot x = 2 cos e c 2 x Solution: LHS = tan x + cot x = sin x cos x + cos x sin x = sin 2 x + cos 2 x cos x sin x = 1 cos x sin x ← sin 2 x + cos 2 x = 1 = 1 1 2 sin 2 x ← sin 2 x = 2 sin x cos x 1 2 sin 2 x = sin x cos x = 2 sin 2 x = 2 ( 1 sin 2 x ) = 2 cos e c 2 x = RHS ∴ Proven Question 18: Prove the identity cos x − sin 2 x cos 2 x + sin x − 1 = 1 tan x Solution: LHS = cos x − sin 2 x cos 2 x + sin x − 1 = cos x − 2 sin x cos x ( 1 − 2 sin 2 x ) + sin x − 1 ← cos 2 x = 1 − 2 sin 2 x = cos x ( 1 − 2 sin x ) sin x − 2 sin 2 x = cos x ( 1 − 2 sin x ) sin x ( 1 − 2 sin x ) = cos x sin x = cot x = 1 tan x = RHS ∴ Proven
5.2.1 Six Trigonometric Functions of Any Angle Posted on April 22, 2020 by user 5.2a Six Trigonometric Functions of Any Angle (A) The definition of sin, cos, tan, cosec, sec and cot 1. Let P (x, y) be any point on the circumference of the circle with centre O and of radius r. Based on ∆ OPQ in the above diagram, 2. The definitions of tangent, cotangent, secant and cosecant of any angle are: 3. The relations of the trigonometric ratio of an angle θ with its complementary angle (90o – θ) are: For examples: (a) sin 75o = cos (90o – 75o) = cos 15o (b) tan 50o = cot (90o – 50o) = cot 40o (c) sec 25o= cosec (90o – 25o) = cosec 65o 4. The trigonometric ratios of any negative angle (–θ) are: A negative angle is an angle measured in a clockwise direction from the positive x-axis. For example, – 60ois equivalent to 300o (360o – 60o). Example: Express each of the following trigonometric functions in terms of the trigonometric ratios of acute angles. Hence, find each value using a calculator. (a) cos (– 325o) (b) tan (– 124o) (c) sin (– 115o) Solution: (a) cos (– 325o) = cos 325o ← {The formula cos (–θ) = cos θ is used} = cos (360o– 325o) ← {At fourth quadrant, cos is positive} = cos 35o = 0.8192 (b) tan (– 124o) = – tan 124o ← {The formula tan (–θ) = – tan θ is used} = – [– tan (180o– 124o)] ← {At second quadrant, tan is negative} = tan 56o = 1.483 (c) sin (– 115o) = – sin 115o ← {The formula sin (–θ) = – sin θ is used} = – sin (180o– 115o) ← {At second quadrant, sin is positive} = – sin 65o = – 0.9063
5.6a Solving Trigonometric Equation (Basic Equation In Sinx/ Cosx/ Tanx/ Cosecx/ Secx/ Cotx) Posted on April 22, 2020 by user 5.6 Simple Trigonometric Equations Steps to solve simple trigonometric equation: (1) Determine the range of values of the required angles. (2) Find a basic angle by using calculator. (3) Determine the quadrants the angle should be. (4) Determine the values of angles in those quadrants. (A) Solving Trigonometric Equation (Basic Equation in sinx/ cosx/ tanx/ cosecx/ secx/ cotx) Example: Find all the values of θ for 0° < θ < 360° that satisfy each of the following trigonometric equations. (a) sin θ = 0.6137 (b) cos θ = 0.2377 (c) tan θ = 2.7825 (d) sin θ = -0.8537 (e) sin 2θ = 0.5293 Solution: (a) sin θ = 0.6137 basic angle = sinˉ¹ 0.6137 = 37.86° θ = 37.86°, 180°-37.86° θ = 37.86°, 142.14° (b) cos θ = 0.2377 basic angle = cosˉ¹ 0.2377 = 76.25° θ = 76.25°, 360° – 76.25° θ = 76.25°, 283.75° (c) tan θ = 2.7825 basic angle = tanˉ¹ 2.7825 = 70.23° θ = 70.23°, 180° + 70.23° θ = 70.23°, 250.23° (d) sin θ = -0.8537 basic angle = sinˉ¹ 0.8537 = 58.62° θ = 180° + 58.62°, 360° – 58.62° θ = 238.62°, 301.38° (e) sin 2θ = 0.5293 basic angle = 31.96° 0° < θ < 360° 0° < 2θ < 720° 2θ = 31.96°, 180° – 31.96°, 360° + 31.96°, 360° + 180° – 31.96° 2θ = 31.96°, 148.04°, 391.96°, 508.04° θ = 15.98°, 74.02°, 195.98°, 254.02°
Short Question 9 & 10 Posted on April 22, 2020 by user Question 9: Given that sin θ = 3 5 , where θ is an acute angle, without using tables or a calculator, find the values of (a) sin (180º + θ), (b) cos (180º – θ), (c) tan (360º + θ). Solution: (a) sin θ = 3 5 cos θ = 4 5 tan θ = 3 4 sin (180º + θ) = sin 180º cos θ + cos 180º sin θ = (0) cos θ + (– 1) sin θ = – sin θ = − 3 5 (b) cos (180º – θ) = cos 180º cos θ + sin 180º sin θ = (– 1) cos θ + (0) sin θ = – cos θ = − 4 5 (c) tan ( 360 ∘ + θ ) = tan 360 ∘ + tan θ 1 − tan 360 ∘ tan θ = 0 + tan θ 1 − ( 0 ) ( tan θ ) = tan θ = 3 4 Question 10: Prove each of the following trigonometric identities. (a) cot2 x – cot2 x cos2x = cos2 x (b) sec x sec x − cos x = cos e c 2 x Solution: (a) LHS: cot 2 x − cot 2 x cos 2 x = cot 2 x ( 1 − cos 2 x ) = cot 2 x ( s i n 2 x ) = cos 2 x s i n 2 x ( s i n 2 x ) = cos 2 x (RHS) (b) LHS: sec x sec x − cos x = 1 cos x 1 cos x − cos x = 1 cos x 1 cos x − cos 2 x cos x = 1 cos x 1 − cos 2 x cos x = 1 cos x × cos x 1 − cos 2 x = 1 1 − cos 2 x = 1 s i n 2 x = cos e c 2 x (RHS)