5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)


5.3.4 Sketching Graphs of Trigonometric Functions (Part 3)
Example 2:
(a) Sketch the graph y = –½ cos x for 0 ≤ x 2π.
(b) Hence, using the same axes, sketch a suitable graph to find the number of solutions to the equation π 2 x + cos x = 0 for 0 ≤ x 2π.
State the number of solutions.

Solution:
(a)



(b)


π 2 x + cos x = 0 π 2 x = cos x π 4 x = 1 2 cos x Multiply both sides by 1 2 y = π 4 x y = 1 2 cos x

The suitable graph to draw is y = π 4 x .  
x
π 2
π
2π
y = π 4 x
½
¼
From the graphs, there are two points of intersection for 0 ≤ x ≤ 2π.
Number of solutions = 2.


Basic Trigonometric Identities


5.4 Basic Trigonometric Identities

Three basic trigonometric identities are:

sin2 x + cos2 x = 1
tan2 x + 1 = sec2 x
cot2 x + 1 = cosec2 x

[adinserter block="3"]
Example 1 (To Prove Trigonometric Identities which involve the Three Basic Identities)
Prove each of the following trigonometric identities.
(a) sin2 x – cos2 x = 1 – 2 cos2 x
(b) (1 – cosec2 x) (1– sec2 x) = 1

Solution:
(a)
sin2 x– cos2 x = 1 – 2 cos2x
LHS: sin2 x – cos2 x
= 1 – cos2 x – cos2 x
= 1 – 2 cos2 x (RHS)
 
(b)
( 1 cosec 2 x ) ( 1 sec 2 x ) = 1 LHS: ( 1 cosec 2 x ) ( 1 sec 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( cot 2 x ) ( tan 2 x ) = ( 1 tan 2 x ) tan 2 x = 1 (RHS)



Example 2 (To Solve Trigonometric Equations which involve the Three Basic Identities)
Solve the following trigonometric equations for 0ox ≤ 360o.
(a) sin2 x cos x + 1 = cos x
(b) 2 cosec2 x – 5 cot x = 0

Solution:
(a)
sin2 cos x + 1 = cos x
(1 – cos2 x) cos x + 1 = cos x
cos x – cos3 x + 1 = cos x
cos3 x = 1
cos x = 1
x = 0o, 360o

(b)
2 cosec2 x – 5 cot x = 0
2 (1 + cot2 x) – 5 cot x = 0
2 + 2 cot2 x – 5 cot x = 0
2 cot2 x – 5 cot x + 2 = 0
(2 cot x – 1) (cot x – 2) = 0
cot x= ½ or cotx = 2
cot x= ½ or cot x = 2
tan x = 2 tan x = ½
x =63.43o, 243.43o   x = 26.57o, 206.57o

(Note: tangent is positive in the first and third quadrants)

Thus, x = 26.57o, 63.43o, 206.57o, 243.43o


Short Question 6 & 7


Question 6:
The points P, Q and R are collinear. It is given that   P Q = 4 a ˜ 2 b ˜  and   Q R = 3 a ˜ + ( 1 + k ) b ˜ , where k is a constant. Find
(a)    the value of k,
(b)    the ratio of PQ : QR.

Solution:
(a)
Note: If P, Q and R are collinear, PQ =m QR 4 a ˜ 2 b ˜ =m[ 3 a ˜ +( 1+k ) b ˜ ] 4 a ˜ 2 b ˜ =3m a ˜ +m( 1+k ) b ˜ Comparing vector: a ˜ : 4=3m         m= 4 3 b ˜ : 2=m( 1+k ) 2= 4 3 ( 1+k ) 1+k= 6 4 k= 3 2 1 k= 5 2

(b)
P Q = m Q R P Q = 4 3 Q R P Q Q R = 4 3 P Q : Q R = 4 : 3



Question 7:
Given that x ˜ = 3 i ˜ + m j ˜ and   y ˜ = 4 i ˜ 3 j ˜ , find the values of m if the vector   x ˜    is parallel to the vector y ˜ .

Solution:
If vector  x ˜  is parallel to vector  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Comparing vector: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4

4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors


4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors
1. When a vector a ˜ is multiplied by a scalar k, the product is k a ˜ . Its magnitude is k times the magnitude of the vector a ˜ .

2. The vector a ˜ is parallel to the vector b ˜ if and only if b ˜ = k a ˜ , where k is a constant.

3. If the vectors a ˜ and b ˜ are not parallel and h a ˜ = k b ˜ , then h = 0 and k = 0.
 


Example 1:
If vectors a ˜ and b ˜  are not parallel and ( k 7 ) a ˜ = ( 5 + h ) b ˜ , find the value of k and of h.

Solution:
The vectors a ˜ and b ˜ are not parallel, so
k – 7 = 0 → = 7
5 + h = 0 → h = –5

4.3 Addition and Subtraction of Vectors


4.3.2 Subtraction of Vectors
The subtraction of the vector b ˜ from the vector  a ˜ is written as  a ˜ b ˜ . This operation can be considered as the addition of the vector a ˜ with the negative vector of b ˜ . Therefore a ˜ b ˜ = a ˜ + ( b ˜ ) .  


Example 1:

In the diagram above, vector OP = p ˜ ,   OR = r ˜ and Q divides PR in the ratio of 2 : 3. Find the following vectors in terms of p ˜  and  r ˜
( a )  PR ( b )  OQ ( c )  QM  if M is the midpoint of OR.

Solution:
(a)
P R = P O + O R = O P + O R = p ˜ + r ˜

(b)
O Q = O P + P Q = O P + 2 5 P R = p ˜ + 2 5 ( p ˜ + r ˜ ) = p ˜ 2 5 p ˜ + 2 5 r ˜ = 3 5 p ˜ + 2 5 r ˜

(c)
Q M = Q O + O M = O Q + O M = O Q + 1 2 O R = ( 3 5 p ˜ + 2 5 r ˜ ) + 1 2 r ˜ = 3 5 p ˜ 2 5 r ˜ + 1 2 r ˜ = 3 5 p ˜ + 1 10 r ˜

Long Question 5


Question 5:
Diagram below shows a triangle KLM.


It is given that KP:PL=1:2, LR:RM=2:1,  KP =2 x ˜ ,  KM =3 y ˜ . (a) Express in terms of  x ˜  and  y ˜ , (i)  MP (ii)  MR (b) Given  x ˜ =2 i ˜  and  y ˜ = i ˜ +4 j ˜ , find  | MR | . (c) Given  MQ =h MP  and  QR =n KR , where h and n are constants,    find the value of h and of n.


Solution:
(a)(i)
MP = MK + KP   =3 y ˜ +2 x ˜   =2 x ˜ 3 y ˜

(a)(ii)
MR = 1 3 ML   = 1 3 ( MK + KL )   = 1 3 ( 3 y ˜ +6 x ˜ )   =2 x ˜ y ˜

(b)
MR =2( 2 i ˜ )( i ˜ +4 j ˜ )   =4 i ˜ + i ˜ 4 j ˜   =5 i ˜ 4 j ˜ | MR |= 5 2 + ( 4 ) 2    = 41  units

(c)
MQ + QR = MR h MP +n KR = MR h( 2 x ˜ 3 y ˜ )+n( KM + MR )=2 x ˜ y ˜ h( 2 x ˜ 3 y ˜ )+n( 3 y ˜ +2 x ˜ y ˜ )=2 x ˜ y ˜ 2h x ˜ 3h y ˜ +2n x ˜ +2n y ˜ =2 x ˜ y ˜ ( 2h+2n ) x ˜ +( 3h+2n ) y ˜ =2 x ˜ y ˜ 2h+2n=2..........(1) 3h+2n=1..........(2) ( 1 )( 2 ):5h=3  h= 3 5 From ( 1 ):h+n=1 3 5 +n=1    n=1 3 5    n= 2 5

Short Question 4 & 5


Question 4:
Diagram below shows a parallelogram ABCD with BED as a straight line.


Given that  AB =7 p ˜ ,  AD =5 q ˜  and DE=3EB, express, in terms of  p ˜  and  q ˜ . (a)  BD (b)  EC

Solution:

(a)
Note: for parallelogram, A B = D C = 7 p ˜ , A D = B C = 5 q ˜ . B D = B A + A D B D = 7 p ˜ + 5 q ˜  


(b)

D E =3 E B E B D E = 1 3 E B : D E = 1 : 3 E B = 1 4 D B = 1 4 ( B D ) = 1 4 [ ( 7 p ˜ + 5 q ˜ ) ] From (a) = 7 4 p ˜ + 5 4 q ˜ E C = E B + B C E C = 7 4 p ˜ + 5 4 q ˜ + 5 q ˜ E C = 7 4 p ˜ + 25 4 q ˜




Question 5:


Use the above information to find the values of h and k when r = 2p – 3q.

Solution:
r = 2 p 3 q ( h 1 ) a ˜ + ( h + k ) b ˜ = 2 ( 5 a ˜ 7 b ˜ ) 3 ( 2 a ˜ + 3 b ˜ ) ( h 1 ) a ˜ + ( h + k ) b ˜ = 10 a ˜ 14 b ˜ + 6 a ˜ 9 b ˜ ( h 1 ) a ˜ + ( h + k ) b ˜ = 16 a ˜ 23 b ˜ Comparing vector: h 1 = 16 h = 17 h + k = 23 17 + k = 23 k = 40

Long Question 2


Question 2:
Given that   A B = ( 10 14 ) , O B = ( 4 6 ) and C D = ( m 7 ) , find
(a) the coordinates of A,
(b) the unit vector in the direction of O A .
(c) the value of m if CD is parallel to AB .

Solution:

(a)
A B = A O + O B ( 10 14 ) = ( x y ) + ( 4 6 ) ( x y ) = ( 10 14 ) ( 4 6 ) A O = ( 6 8 ) O A = ( 6 8 ) A = ( 6 , 8 )


(b)
| OA |= ( 6 ) 2 + ( 8 ) 2 | OA |= 100 =10 the unit vector in the direction of  OA = OA | OA | = ( 6 8 ) 10 = 1 10 ( 6 8 ) =( 3 5 4 5 )


(c)
Given  CD  parallel  AB   CD =k AB ( m 7 )=k( 10 14 ) ( m 7 )=( 10k 14k ) 7=14k k= 1 2 m=10k=10( 1 2 )=5