Long Question 1 & 2


Question 1:
A curve with gradient function 5 x 5 x 2  has a turning point at (m, 9).
(a) Find the value of m.
(b) Determine whether the turning point is a maximum or a minimum point.
(c) Find the equation of the curve.

Solution:
(a)
d y d x = 5 x 5 x 2 At turning point ( m , 9 ) , d y d x = 0. 5 m 5 m 2 = 0 5 m 2 = 5 m m 3 = 1 m = 1

(b)
dy dx =5x 5 x 2 =5x5 x 2 d 2 y d x 2 =5+ 10 x 3 When x=1,  d 2 y d x 2 =15 (> 0) Thus, ( 1,9 ) is a minimum point.

(c)
y= ( 5x5 x 2 )  dx y= 5 x 2 2 + 5 x +c At turning point ( 1,9 ), x=1 and y=9. 9= 5 ( 1 ) 2 2 + 5 1 +c c= 3 2 Equation of the curve: y= 5 x 2 2 + 5 x + 3 2




Question 2:
A curve has a gradient function kx2– 7x, where k is a constant. The tangent to the curve at the point (1, 3 ) is parallel to the straight line  y + x– 4 = 0.
Find
(a) the value of k,
(b) the equation of the curve.

Solution:
(a)
y + x – 4 = 0
y = – x + 4
m = –1

f ’(x) = kx² – 7x
Given tangent to the curve at the point (1, 3) parallel to the straight line
k (1)² – 7 (1) = –1
k – 7 = –1
k = 6

(b)
  f ' ( x ) = 6 x 2 7 x f ( x ) = ( 6 x 2 7 x ) d x f ( x ) = 6 x 3 3 7 x 2 2 + c 3 = 2 ( 1 ) 3 7 ( 1 ) 2 2 + c at point ( 1 , 3 ) c = 9 2 f ( x ) = 2 x 3 7 x 2 2 + 9 2

Long Question 5


Question 5:
In Diagram below, the straight line WY is normal to the curve   y = 1 2 x 2 + 1 at B (2, 4). The straight line BQ is parallel to the y–axis.


Find
(a) the value of t,
(b) the area of the shaded region,
(c) the volume generated, in terms of π, when the region bounded by the curve, the y–axis
  and the straight line y = 4 is revolved through 360° about the y-axis.

Solution:
(a)
y= 1 2 x 2 +1 Gradient of tangent,  dy dx =2( 1 2 x )=x At point B dy dx =2 Gradient of normal,  m 2 = 1 2 40 2t = 1 2 8=2+t t=10


(b)
Area of the shaded region =Area under the curve + Area of triangle BQY = 0 2 ( 1 2 x 2 +1 )  dx+ 1 2 ( 102 )( 4 ) = [ x 3 6 +x ] 0 2 +16 =[ 8 6 +2 ]0+16 =19 1 3  unit 2


(c)
At yaxis, x=0, y= 1 2 ( 0 )+1=1 y= 1 2 x 2 +1,  x 2 =2y2 Volume generated  π x 2 dy =π 1 4 ( 2y2 )  dy =π [ y 2 2y ] 1 4 =π[ ( 168 )( 12 ) ] =9π  unit 3

Short Question 1


Question 1:
Find the integral of each of the following . ( a ) ( 3 x 2 5 2 x 3 + 2 ) d x ( b ) x 2 ( x 5 + 2 x ) d x ( c ) 3 x 4 + 2 x x 3 d x ( d ) ( 7 + x ) ( 7 x ) x 4 d x ( e ) ( 5 x 1 ) 3 d x ( f ) 3 ( 4 x + 7 ) 8 d x


Solution:
(a)
( 3 x 2 5 2 x 3 + 2 ) d x = ( 3 x 2 5 x 3 2 + 2 ) d x = 3 x 1 + 5 x 2 4 + 2 x + c = 3 x + 5 4 x 2 + 2 x + c


(b)
x 2 ( x 5 + 2 x ) d x = ( x 7 + 2 x 3 ) d x = x 8 8 + 2 x 4 4 + c = x 8 8 + x 4 2 + c


(c)
3 x 4 + 2 x x 3 d x = ( 3 x 4 x 3 + 2 x x 3 ) d x = ( 3 x + 2 x 2 ) d x = 3 x 2 2 2 x + c


(d)
( 7 + x ) ( 7 x ) x 4 d x = ( 49 x 2 x 4 ) d x = ( 49 x 4 1 x 2 ) d x = ( 49 x 4 x 2 ) d x = 49 x 3 3 + 1 x + c = 49 3 x 3 + 1 x + c


(e)
( 5 x 1 ) 3 d x = ( 5 x 1 ) 4 ( 4 ) ( 5 ) + c = 1 20 ( 5 x 1 ) 4 + c


(f)
3 ( 4 x + 7 ) 8 d x = 3 ( 4 x + 7 ) 8 d x = 3 ( 4 x + 7 ) 7 ( 7 ) ( 4 ) + c = 3 28 ( 4 x + 7 ) 7 + c

Short Question 11 – 13


Question 11:
Given  2 3 g(x)dx=4 , and  2 3 h(x)dx=9 , find the value of (a)  2 3 5g(x)dx, (b) m if  2 3 [ g(x)+3h( x )+4m ]dx=12

Solution:
(a)
2 3 5g(x)dx=5 2 3 g(x)dx                  =5×4                  =20

(b)
2 3 [ g(x)+3h( x )+4m ]dx=12 2 3 g(x)dx+3 2 3 h( x )dx+ 2 3 4mdx=12 4+3( 9 )+4m [ x ] 2 3 =12        4m[ 3( 2 ) ]=19                       20m=19                           m= 19 20



Question 12:
(a) Find the value of  1 1 ( 3x+1 ) 3 dx. (b) Evaluate  3 4 1 2x4  dx.

Solution:
a)  1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] 1 1                            = [ ( 3x+1 ) 4 12 ] 1 1                            = 1 12 [ 4 4 ( 2 ) 4 ]                            = 1 12 ( 25616 )                            =20

(b)  3 4 1 2x4  dx= 3 4 1 ( 2x4 ) 1 2  dx                             = 3 4 ( 2x4 ) 1 2  dx                             = [ ( 2x4 ) 1 2 +1 1 2 ( 2 ) ] 3 4                             = [ 2x4 ] 3 4                             =[ 2( 4 )4 2( 3 )4 ]                             =2 2



Question 13:
Given that y= x 2 2x1 , show that dy dx = 2x( x1 ) ( 2x1 ) 2 . Hence, evaluate  2 2 x( x1 ) 4 ( 2x1 ) 2  dx .

Solution:
y= x 2 2x1 dy dx = ( 2x1 )( 2x )x( 2 ) ( 2x1 ) 2     = 4 x 2 2x2 x 2 ( 2x1 ) 2     = 2 x 2 2x ( 2x1 ) 2     = 2x( x1 ) ( 2x1 ) 2  ( shown ) 2 2 2x( x1 ) ( 2x1 ) 2  dx = [ x 2 2x1 ] 2 2 1 8 2 2 2x( x1 ) ( 2x1 ) 2  dx = 1 8 [ x 2 2x1 ] 2 2 1 4 2 2 x( x1 ) ( 2x1 ) 2  dx = 1 8 [ ( 2 2 2( 2 )1 )( ( 2 ) 2 2( 2 )1 ) ]                            = 1 8 [ ( 4 3 )( 4 5 ) ]                            = 1 8 ( 32 15 )                            = 4 15

Long Question 3


Question 3:
The gradient function of a curve which passes through P(2, 14) is 6x² – 12x
Find
(a) the equation of the curve,
(b) the coordinates of the turning points of the curve and determine whether each of the turning points is a maximum or a minimum.

Solution:
(a)
Given gradient function of a curve  dy dx =6 x 2 12x The equation of the curve, y= ( 6 x 2 12x )  dx y= 6 x 3 3 12 x 2 2 +c y=2 x 3 6 x 2 +c 14=2 ( 2 ) 3 6 ( 2 ) 2 +c, at point P ( 2,14 ) 14=8+c c=6 y=2 x 3 6 x 2 6


(b)
dy dx =6 x 2 12x At turning points,  dy dx =0 6 x 2 12x=0 6x( x2 )=0 x=0x=2 x=0,  y=2 ( 0 ) 3 6 ( 0 ) 2 6=6 x=2,  y=2 ( 2 ) 3 6 ( 2 ) 2 6=14 d 2 y d x 2 =12x12 When x=0 d 2 y d x 2 =12( 0 )12=12 <0 ( 0,6 ) is a maximum point. When x=2 d 2 y d x 2 =12( 2 )12=12 >0 ( 2,14 ) is a minimum point.

Short Question 5 – 7


Question 5:
Given  ( 6 x 2 +1 )dx=m x 3 +x +c,  where m and c are constants, find (a) the value of m. (b) the value of c if  ( 6 x 2 +1 )dx=13 when x=1.

Solution:
(a)
( 6 x 2 +1 )dx=m x 3 +x +c 6 x 3 3 +x+c=m x 3 +x+c 2 x 3 +x+c=m x 3 +x+c Compare the both sides,  m=2

(b)

( 6 x 2 +1 )dx=13 when x=1. 2 ( 1 ) 3 +1+c=13            3+c=13                 c=10



Question 6:
It is given that  5 k g(x)dx=6 , and  5 k [ g( x )+2 ]dx =14, find the value of k.

Solution:
5 k [ g( x )+2 ]dx =14 5 k g( x )dx + 5 k 2dx =14                6+ [ 2x ] 5 k =14                 2( k5 )=8                      k5=4                           k=9



Question 7:
Given  k 2 (4x+7)dx=28 , calculate the possible value of k.

Solution:
k 2 (4x+7)dx=28 [ 2 x 2 +7x ] k 2 =28 8+14( 2 k 2 +7k )=28 222 k 2 7k=28 2 k 2 +7k+6=0 ( 2k+3 )( k+2 )=0 k= 3 2  or k=2

Short Question 8 – 10


Question 8:
Given y= 5x x 2 +1  and  dy dx =g( x ), find the value of  0 3 2g( x )dx.

Solution:
Since dy dx =g( x ), thus y= g( x ) dx 0 3 2g( x )dx=2 0 3 g( x )dx   =2 [ y ] 0 3   =2 [ 5x x 2 +1 ] 0 3   =2[ 5( 3 ) 3 2 +1 0 ]   =2( 15 10 )   =3



Question 9:
Find  5 k ( x+1 )dx, in terms of k.

Solution:
5 k ( x+1 )dx=[ x 2 2 +x ] 5 k   =( k 2 2 +k )( 5 2 2 +5 )   = k 2 +2k 2 35 2   = k 2 +2k35 2



Question 10:
Given that= 2 5 g(x)dx=2 . Find (a) the value of  5 2 g(x)dx, (b) the value of m if  2 5 [ g(x)+m( x ) ]dx=19

Solution:
(a)  5 2 g(x)dx= 2 5 g(x)dx                      =( 2 )                      =2

(b)  2 5 [ g(x)+m( x ) ]dx=19       2 5 g(x)dx+m 2 5 xdx=19               2+m [ x 2 2 ] 2 5 =19                        m 2 [ x 2 ] 2 5 =21                     m 2 [ 254 ]=21                             21m=42                                 m=2

3.2 Integration by Substitution

3.2 Integration by Substitution
It is given that ( a x + b ) n d x , n 1.  


(A) Using the Substitution method,
Let u=ax+b Thus,  du dx =a    dx= du a

Example 1:
( 3x+5 ) 3 dx. Let u=3x+5     du dx =3 dx= du 3 ( 3x+5 ) 3 dx = u 3 du 3    substitute 3x+5=u and dx= du 3 = 1 3 u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c    substitute back  u=3x+5   = ( 3x+5 ) 4 12 +c


(B) Using Formula method

( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Example 2 (Formula method):

  ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Basic Integration

3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

Type 1:

a d x = a x + C Example 2 d x = 2 x + C

Type 2:

a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 2 3 x 5 d x = 2 3 x 5 d x = 2 3 ( x 4 4 ) + C = 2 3 ( x 4 4 ) + C = x 4 6 + C


Type 3:

( u+v )dx= udx± vdx u and v are functions in x Example 1 3 x 2 +2xdx= 3 x 2 dx+ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C


E x a m p l e 2 ( x + 2 ) ( 3 x + 1 ) d x = 3 x 2 + 7 x + 2 d x = 3 x 2 d x + 7 x d x + 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C


E x a m p l e 3 3 x 3 + x 2 x x d x = 3 x 2 + x 1 d x = 3 x 2 d x + x d x 1 d x = 3 x 3 3 + x 2 2 x + C = x 3 + x 2 2 x + C
 

Finding Equation Of A Curve From Its Gradient Function


3.3 Finding Equation of a Curve from its Gradient Function


Example 1:
Find the equation of the curve that has the gradient function  d y d x = 2 x + 8 and passes through the point (2, 3).

Solution:
y = ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C
y = x2 + 8x + C
3 = 22 +8(2) + C  (2, 3)
C = –17
Hence, the equation of the curve is
 y = x2 + 8x – 17



Example 2:
The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve.

Solution:
At the point where a curve has a minimum value,  d y d x = 0
d y d x = 0  
2x – 4 = 0
x = 2

Therefore minimum point = (2, 3).

d y d x = 2 x 4 y = ( 2 x 4 ) d x y = 2 x 2 2 4 x + C y = x 2 4 x + C

When x = 2, y = 3.
3 = 22 – 4(2) + c
c = 7

Hence, the equation of the curve is
y = x2 – 4x + 7