10.2 The Cosine Rule


10.2 The Cosine Rule



The cosine rule can be used when
(i) two sides and the included angle, or
(ii) three sides of a triangle are given.


(A) If you know 2 sides and 1 angle between them [included angle] ⇒ Cosine rule

Example:


Calculate the length of AC, x, in cm for the triangle above.

Solution:
b2=a2+c22accosBx2=42+722(4)(7)cos50x2=16+4956(0.6428)x2=6535.997x2=29.003x=5.385 cm


(B) If you know 3 sides ⇒ Cosine rule

Example:


Calculate ÐBAC for the triangle above.

Solution:
cosA=b2+c2a22bccosBAC=72+62822(7)(6)cosBAC=0.25BAC=cos10.25BAC=75.52o

10.1 The Sine Rule


10.1 The Sine Rule
In a triangle ABC in which the sides BC, CA and AB are denoted by a, b, and c as shown, and A, B, C are used to denote the angles at the vertices A, B, C respectively,



The sine rule can be used when
(i) two sides and one non-included angle or
(ii) two angles and one opposite side are given.


(A) If you know 2 angles and 1 side ⇒ Sine rule

Example:


Calculate the length, in cm, of AB.

Solution:
∠ACB = 180o – (50o + 70o) = 60o
ABsin60o=4sin50oAB=4×sin60osin50oAB=4.522 cm


(B) If you know 2 sides and 1 angle (but not between them) ⇒ Sine rule

Example:

Calculate ∠ACB.

Solution:
28sin54o=26sinACBsinACB=26×sin54o28sinACB=0.7512ACB=48.7o


(C) Case of ambiguity (2 possible triangles)

Example

Calculate ∠ACBθ.

Solution:
Two possible triangle with these measurement
AB = 26cm BC = 28 cm Ð BAC = 54o
26sinθ=28sin54osinθ=0.7512θ=sin10.7512θ=48.7o,180o48.7oθ=48.7o (Acute angle), 131.3o (Obtuse angle)

Long Questions (Question 2 & 3)


Question 2:
Given the equation of a curve is:
y = x2 (x – 3) + 1
(a) Find the gradient of the curve at the point where x = –1.
(b) Find the coordinates of the turning points.

Solution:
(a)
y=x2(x3)+1y=x33x2+1dydx=3x26xWhen x=1dydx=3(1)26(1)     =9Gradient of the curve is 9.

(b)
At turning points, dydx=0
3x2 – 6x = 0
x2 – 2x = 0
x (x – 2) = 0
x = 0, 2

y = x2 (x – 3) + 1
When x = 0, y = 1
When x = 2,
y = 22 (2 – 3) + 1
y = 4 (–1) + 1 = –3
Therefore, coordinates of the turning points are (0, 1) and (2, –3).


Question 3:
It is given the equation of the curve is y = 2x (1 – x)4 and the curve pass through T(2, 4).
Find
(a) the gradient of the curve at point T.
(b) the equation of the normal to the curve at point T.

Solution:
(a)
y=2x(1x)4dydx=2x×4(1x)3(1)+(1x)4×2    =8x(1x)3+2(1x)4At T(2,4),x=2.dydx=16(1)+2(1)    =16+2    =18

(b)
Equation of normal:yy1=1dydx(xx1)y4=118(x2)18y72=x+2x+18y=74

Long Questions (Question 1)


Question 1:
The curve y = x3 – 6x2 + 9x + 3 passes through the point P (2, 5) and has two turning points, A (3, 3) and B.
Find 
(a) the gradient of the curve at P.
(b) the equation of the normal to the curve at P.
(c) the coordinates of and determine whether B is a maximum or the minimum point.

Solution:
(a)
y = x3 – 6x2 + 9x + 3
dy/dx = 3x2– 12x + 9
At point P (2, 5),
dy/dx = 3(2)2 – 12(2) + 9 = –3

Gradient of the curve at point P = –3.

(b)
Gradient of normal at point P = 1/3
Equation of the normal at P (2, 5):
yy1 = m (x – x1)
y – 5 = 1/3 (x – 2)
3y – 15 = x – 2
3y = x + 13

(c) 
At turning point, dy/dx = 0.
3x2 – 12x + 9 = 0
x2 – 4x + 3 = 0
(x – 1)( x – 3) = 0
x – 1 = 0  or x – 3 = 0
x = 1  x = 3 (Point A)

Thus at point B:
x = 1
y = (1)3– 6(1)2 + 9(1) + 3 = 7

Thus, coordinates of = (1, 7)

when x=1, d2ydx2=6x12d2ydx2=6(1)12d2ydx2=6<0Since d2ydx2<0, B is a maximum point.

Short Questions (Question 22 – 25)


Question 23:
Given that y=15x+24x3 ,

(a) Find the value of dydx when x = 2,
(b) Express in terms of k, the approximate change in when x changes from 2 to
  2 + k, where k is a small change.

Solution:
(a)
y=15x+24x3y=15x+24x3dydx=1572x4dydx=1572x4When x=2dydx=157224=10.5

(b)
Approximate change in y to x in terms of k,δyδxdydxδy=dydx×δxδy=10.5×(2+k2)δy=10.5k



Question 24:
If the radius of a circle increases from 4 cm to 4.01 cm, find the approximate increase in the area.

Solution:
Area of circle, A=πr2dAdr=2πrApproximate increase in the area to radius,δAδrdAdrδA=dAdr×δrδA=(2πr)×(4.014)δA=[2π(4)]×(0.01)δA=0.08π cm2



Question 25:
Given that y =3t+ 5t2 and x = 5t 1.
(a) Find dydx  in terms of x,
(b) If increases from 5 to 5.01, find the small increase in t.

Solution:
y=3t+5t2dydt=3+10tx=5t1dxdt=5

(a)
dydx=dydt×dtdxdydx=(3+10t)×15dydx=3+10(x+15)5x=5t1t=x+15dydx=3+2x+25dydx=5+2x5

(b)
Small increase in t to x,δt=dtdx×δxδt=15×(5.015)δt=0.002

Short Questions (Question 20 – 22)


Question 20:
The volume of water V cm3, in a container is given by   V=15h3+7h , where h cm is the height of the water in the container. Water is poured into the container at the rate of 15cm3s-1. Find the rate of change of the height of water in cms-1, at the instant when its height is 3cm. 

Solution:

V=15h3+7hdVdh=35h2+7=3h2+355Given dVdt=15h=3Rate of change of the height of water=dhdtdhdt=dhdV×dVdtChain ruledhdt=53h2+35×15dhdt=7562 cms1



Question 21:
A wire of length 88 cm is bent to form a circle. When the wire is heated, the length increases at the rate of 0.3 cms-1.
(a) Calculate the rate of change in the radius of the circle.
(b) Hence, calculate the radius of the circle after 5s.

Solution:
Length of circumference of a circle, L=2πrdLdr=2π

(a)
Given dLdt=0.3Rate of change in the radius of the circle=drdtdrdt=drdL×dLdtdrdt=12π×0.3drdt=0.0477 cms1

(b)
2πr=88r=882π=44πHence, the radius of the circle after 5s=44π+5(0.0477)=14.24 cm



Question 22:

The diagram shows a conical container with diameter 0.8m and height 0.6m. Water is poured into the container at a constant rate of 0.02m3s-1. Calculate the rate of change of the height of the water level when the height of water level is 0.5m.

Solution:

Let, h = height of the water levelr = radius of the water surfaceV = volume of the waterrh=0.40.6Concept of similar trianglesrh=23r=23hVolume of water, V=13πr2hV=13π(23h)2hV=427πh3dVdh=(3)427πh2dVdh=49πh2The rate of change of the height of the water levelwhen the height of water level is 0.5 m=dhdt.dhdt=dhdV×dVdtChain ruledhdt=94πh2×0.02Given dVdt=0.02dhdt=94π(0.5)2×0.02dhdt=0.0572 ms1

Short Questions (Question 14 – 16)


Question 14:
Given y = x (6 – x), express yd2ydx2+xdydx+18 in terms of in the simplest form.

Hence, find the value of which satisfies the equation  yd2ydx2+xdydx+18=0

Solution:
y=x(6x)=6xx2dydx=62xd2ydx2=2



Question 15:
Find the coordinates of the point on the curve, y = (4x – 5)2 such that the gradient of the normal to the curve is 1 8 .

Solution:
y = (4x – 5)2
d y d x = 2(4x – 5).4 = 32x – 40

Given the gradient of the normal is 1/8, therefore the gradient of the tangent is –8.
d y d x = –8
32x – 40 = –8
32x = 32
x = 1
y = (4(1) – 5)2= 1

Hence, the coordinates of the point on the curve, y = (4x – 5)2 is (1, 1).



Question 16:
A curve has a gradient function of kx2 – 7x, where k is a constant. The tangent to the curve at the point (1, 4) is parallel to the straight line y + 2x–1 = 0. Find the value of k.

Solution:
Gradient function of kx2– 7x is parallel to the straight line y + 2x–1 = 0
d y d x = kx2– 7x

y + 2x –1 = 0, y = –2x + 1, gradient of the straight line = –2
Therefore kx2– 7x = –2

At the point (1, 4),
k(1)2 – 7(1) = –2
k – 7 = –2
k = 5

Short Questions (Question 11 – 13)


Question 11:
Given that the graph of function f ( x ) = h x 3 + k x 2  has a gradient function f ' ( x ) = 12 x 2 258 x 3 such that h and are constants. Find the values of and k.

Solution:
f ( x ) = h x 3 + k x 2 = h x 3 + k x 2 f ' ( x ) = 3 h x 2 2 k x 3 f ' ( x ) = 3 h x 2 2 k x 3 But it is given that  f ' ( x ) = 12 x 2 258 x 3 Hence, by comparison,  3 h = 12  and   2 k = 258 h = 4    k = 129



Question 12:
Given that  y = x 2 x + 3 , show that  d y d x = x 2 + 6 x ( x + 3 ) 2 Find  d 2 y d x 2  in the simplest form .

Solution:
y = x 2 x + 3 d y d x = ( x + 3 ) ( 2 x ) x 2 .1 ( x + 3 ) 2 = 2 x 2 + 6 x x 2 ( x + 3 ) 2 d y d x = x 2 + 6 x ( x + 3 ) 2  (shown) d 2 y d x 2 = ( x + 3 ) 2 ( 2 x + 6 ) ( x 2 + 6 x ) .2 ( x + 3 ) ( x + 3 ) 4 d 2 y d x 2 = ( x + 3 ) [ ( x + 3 ) ( 2 x + 6 ) 2 ( x 2 + 6 x ) ] ( x + 3 ) 4 d 2 y d x 2 = [ 2 x 2 + 6 x + 6 x + 18 2 x 2 12 x ] ( x + 3 ) 3 d 2 y d x 2 = 18 ( x + 3 ) 3



Question 13:
If  y = x 2 + 4 x , show that  x 2 d 2 y d x 2 2 x d y d x + 2 y = 0.

Solution:
y = x 2 + 4 x d y d x = 2 x + 4 d 2 y d x 2 = 2 x 2 d 2 y d x 2 2 x d y d x + 2 y = x 2 ( 2 ) 2 x ( 2 x + 4 ) + 2 ( x 2 + 4 x ) = 2 x 2 4 x 2 8 x + 2 x 2 + 8 x = 0  (Shown)

Short Questions (Question 5 – 7)


Question 5:
Given that f (x) = 3x2(4x 1)7, find f’(x). 

Solution:
f (x) = 3x2(4x 1)7
f’(x) = 3x2. 7(4x 1)6. 8x + (4x 1)7. 6x
f’(x) = 168x3 (4x 1)6 + 6x (4x 1)7
f’(x) = 6x (4x 1)6 [28x2+ (4x 1)]
f’(x) = 6x (4x 1)6 (32x 1)



Question 6:
Given that y = (1 + 4x)3(3x 1)4, find d y d x

Solution:
y = (1 + 4x)3(3x2 – 1)4
d y d x
= (1 + 4x)3. 4(3x2 – 1)3.6x + (3x2 – 1)4. 3(1 + 4x)2.4
= 24x (1 + 4x)3(3x2 – 1)3 + 12 (3x2 – 1)4(1 + 4x)2
= 12 (1 + 4x)2(3x2 – 1)3 [2x (1 + 4x) + (3x2 – 1)]
= 12 (1 + 4x)2(3x2 – 1)3 [2x + 8x2 + 3x2 – 1]
= 12 (1 + 4x)2(3x2 – 1)3 [11x2 + 2x  – 1]



Question 7:
Given that  f ( x ) = 3 x 4 x 2 1   ,  find  f ' ( x ) . .

Solution:
f ( x ) = 3 x 4 x 2 1 = 3 x ( 4 x 2 1 ) 1 2 f ' ( x ) = 3 x . 1 2 ( 4 x 2 1 ) 1 2 .8 x + ( 4 x 2 1 ) 1 2 .3 f ' ( x ) = 12 x 2 ( 4 x 2 1 ) 1 2 + 3 ( 4 x 2 1 ) 1 2 f ' ( x ) = 3 ( 4 x 2 1 ) 1 2 [ 4 x 2 + ( 4 x 2 1 ) ] f ' ( x ) = 3 ( 8 x 2 1 ) ( 4 x 2 1 )

Short Questions (Question 1 – 4)


Question 1:
Differentiate the expression 2x (4x2 + 2x – 5) with respect to x.

Solution:
2x (4x2 + 2x – 5) = 8x3 + 4x2– 10x
d d x (8x3 + 4x2 – 10x)
= 24x + 8x –10 



Question 2:
Given that  y = x 3 + 2 x 2 + 1 3 x ,  find  d y d x . .

Solution:
y = x 3 + 2 x 2 + 1 3 x y = x 3 3 x + 2 x 2 3 x + 1 3 x y = x 2 3 + 2 x 3 + 1 3 x 1 d y d x = 2 x 3 + 2 3 1 3 x 2 d y d x = 2 x 3 + 2 3 1 3 x 2



Question 3:
Given that  y = 3 5 x + 1 ,  find  d y d x

Solution:
y = 3 5 x + 1 = 3 ( 5 x + 1 ) 1 2 d y d x = 1 2 .3 ( 5 x + 1 ) 3 2 ( 5 ) d y d x = 15 2 [ ( 5 x + 1 ) 3 ] 1 2 d y d x = 15 2 ( 5 x + 1 ) 3



Question 4:
Given that  y = 3 5 u 5 , where u = 4+ 1. Find d y d x in terms of x.

Solution:
y = 3 5 u 5 ,   u = 4 x + 1 y = 3 5 ( 4 x + 1 ) 5 d y d x = 5. 3 5 ( 4 x + 1 ) 4 .4 d y d x = 12 ( 4 x + 1 ) 4