9.9 Small Changes and Approximations

[adinserter block="3"]
9.9 Small Changes and Approximations


If δx is very small, δyδx will be a good approximation of dydx, ,

This is very useful information in determining an approximation of the change in one variable given the small change in the second variable. 


[adinserter block="3"]
Example:
Given that y = 3x2 + 2x – 4. Use differentiation to find the small change in y when x increases from 2 to 2.02.

Solution:
y=3x2+2x4dydx=6x+2

The small change in is denoted by δy while the small change in the second quantity that can be seen in the question is the x and is denoted by δx.

δyδxdydxδy=dydx×δxδy=(6x+2)×(2.022)δx=new xoriginal xδy=[6(2)+2]×0.02 Substitute x with the original value of x, i.e2.δy=0.28

Related Rates of Change


(A) Related Rates of Change


1. If two variables and y are connected by the equation y = f(x)


Notes:
If x changes at the rate of 5 cms -1   dxdt=5
Decreases/leaks/reduces Þ  NEGATIVES values!!!


Example 1 (Rate of change of y and x)
Two variables, and y are related by the equation   y=4x+3x . Given that y increases at a constant rate of 2 units per second, find the rate of change of x when x = 3.

Solution:
y=4x+3x=4x+3x1dydx=43x2=43x2dydt=dydx×dxdt2=(43x2)×dxdtwhen x=32=(4332)×dxdt2=113×dxdtdxdt=611 unit s1


(B) Rates of Change of Volume, Area, Radius, Height and Length




(C) Rate of Change of Any Combination of Two Variables



9.7 Second-Order Differentiation, Turning Points, Maximum and Minimum Points

(A) Second-Order Differentiation

1. When a function y = x3 + x2 – 3x + 6 is differentiated with respect to x, the derivative  dydx=3x2+2x3

2. The second function   dydx can be differentiated again with respect to x. This is called the second derivative of y with respect to and can be written as d2ydx2 .

3. Take note that   d2ydx2(dydx)2 .

For example,
If y = 4x3 – 7x2 + 5x – 1,

The first derivative   dydx=12x214x+5

The second derivative    d2ydx2=24x14

(B) Turning Points, Maximum and Minimum Points



(a) At Turning Points A and B,




(b) At Maximum Point A



(c) At Minimum Point B,




9.6 Gradients of Tangents, Equations of Tangent and Normal

9.6 Gradients of Tangents, Equations of Tangents and Normals



If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of dydx when x = x1.

(A) Gradient of tangent at A(x1, y1):




(B) Equation of tangent:




(C) Gradient of normal at A(x1, y1):






(D) Equation of normal :  




Example 1 (Find the Equation of Tangent)
Given that y=4(3x1)2 . Find the equation of the tangent at the point (1, 1).

Solution:
y=4(3x1)2=4(3x1)2dydx=2.4(3x1)3.3dydx=24(3x1)3At point (1, 1), dydx=24[3(1)1]3=248=3Equation of tangent at point (1, 1) is,y1=3(x1)y1=3x+3y=3x+4


Example 2 (Find the Equation of Normal)
Find the gradient of the curve y=73x+4 at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.

Solution:
y=73x+4=7(3x+4)1dydx=7(3x+4)2.3dydx=21(3x+4)2At point (1, 7), dydx=21[3(1)+4]2=21Gradient of the normal =121Equation of the normal isyy1=m(xx1)y7=121(x(1))21y147=x+121yx148=0

9.5 First Derivatives of Composite Function


(A) Differentiate Composite Function using Chain Rule


Example:
Differentiate y = (x2– 1)8 .

Solution:



(B) Differentiate Composite Function using Alternative Method
   - Easy Version

Example:
Differentiate y = (x2 – 1)8 .

Solution:
y=(x21)8dydx=8(x21)7ddx(x21)dydx=8(x21)7(2x)dydx=16x(x21)7


Practice 1:
Given that y=13x7, find dydx

Solution:
y=13x7=(3x7)1dydx=1(3x7)2.3dydx=3(3x7)2


Practice 2:
Given that y=2x25x+1, find dydx

Solution:
y=2x25x+1=(2x25x+1)12dydx=12(2x25x+1)12(4x5)dydx=4x522x25x+1

9.4 First Derivatives of the Quotient of Two Polynomials

Find the Derivatives of a Quotient using Quotient Rule

Method 1: The Quotient Rule

Example:

 

Method 2: (Differentiate Directly)

Example:

Given thaty=x22x+1,finddydx 

Solution:

y=x22x+1dydx=(2x+1)(2x)x2(2)(2x+1)2=4x2+2x2x2(2x+1)2=2x2+2x(2x+1)2 

 

Practice 1:

 Given thaty=4x3(5x+1)3,finddydx


Solution:

 y=4x3(5x+1)3dydx=(5x+1)3(12x2)4x3.3(5x+1)2.5[(5x+1)3]2=(5x+1)3(12x2)60x3(5x+1)2(5x+1)6=(12x2)(5x+1)2[(5x+1)5x](5x+1)6=(12x2)(5x+1)2(1)(5x+1)6=12x2(5x+1)4

 

 

 

 

9.4 First Derivatives of the Quotient of Two Polynomials

9.4 Find the Derivatives of a Quotient using Quotient Rule

Method 1

The Quotient Rule

Example:




Method 2 (Differentiate Directly)



Example:
Given that y=x22x+1, find dydx

Solution:

y=x22x+1dydx=(2x+1)(2x)x2(2)(2x+1)2 =4x2+2x2x2(2x+1)2=2x2+2x(2x+1)2



Practice 1:
Given that y=4x3(5x+1)3, find dydx

Solution:
y=4x3(5x+1)3dydx=(5x+1)3(12x2)4x3.3(5x+1)2.5[(5x+1)3]2 =(5x+1)3(12x2)60x3(5x+1)2(5x+1)6 =(12x2)(5x+1)2[(5x+1)5x](5x+1)6 =(12x2)(5x+1)2(1)(5x+1)6 =12x2(5x+1)4

Long Questions (Question 4)

Question 4:


In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with ∠APB = θ. Calculate:

  1. the length of the chord AB,
  2. the value of θ in radians,
  3. the difference in length between the arcs AYB and AXB.

Solution:

(a)
 12AB=sin0.41×10(Change the calculator to Rad mode)12AB=3.99The length of chordAB=3.99×2=7.98cm.

(b)
 Let12θ=α,θ=2αsinα=3.995α=0.924radθ=0.924×2=1.848radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm

 

 

 

Long Questions (Question 3)


Question 3:
Diagram below shows a sector QPR with centre P and sector POQ, with centre O.

It is given that OP = 17 cm and PQ = 8.8 cm.
[Use π = 3.142]
Calculate
(a) angle OPQ, in radians,
(b) the perimeter, in cm, of sector QPR,
(c) the area, in cm2, of the shaded region.

Solution:
(a)OPQ=OQPx+x+30=180   2x=150  x=75OPQ=75×3.142180   =1.3092 radians


(b)Length of arc QR=rθ   =8.8×1.3092   =11.52 cmPerimeter of sector QPR=11.52+8.8+8.8=29.12 cm


(c)30o=30×3.142180=0.5237 radArea of segment PQ=12r2(θsinθ)=12×172×(0.5237sin30)=12×289×(0.52370.5)=3.4247 cm2Area of sector QPR=12r2θ=12×8.82×1.3092=50.692 cm2Area of shaded region=3.4247+50.692=54.1167 cm2