Long Questions (Question 2)


Question 2:
Diagram below shows a semicircle PTQ, with centre O and quadrant of a circle RST, with centre R.

[Use π = 3.142]
Calculate
(a) the value of θ, in radians,
(b) the perimeter, in cm, of the whole diagram,
(c) the area, in cm2, of the shaded region.

Solution:
( a ) sinROT= 2.5 5  ROT= 30 o θ= 180 o 30 o = 150 o   =150× π 180   =2.618 rad


( b ) Length of arc PT=rθ    =5×2.618    =13.09 cm Length of arc ST= π 2 ×2.5   =3.9275 cm O R 2 + 2.5 2 = 5 2   O R 2 = 5 2 2.5 2 OR=4.330 Perimeter=13.09+3.9275+2.5+4.330+5    =28.8475 cm


( c ) Area of shaded region =Area of quadrant RSTArea of quadrant RQT Area of quadrant RQT =Area of OQTArea of OTR = 1 2 ( 5 ) 2 ×( 30× π 180 ) 1 2 ( 4.33 )( 2.5 ) =1.1333  cm 2 Area of shaded region =Area of quadrant RSTArea of quadrant RQT = 1 2 ( 2.5 ) 2 ×( 90× π 180 )1.1333 =3.7661  cm 2

Long Questions (Question 1)


Question 1:
Diagram shows a circle, centre O and radius 8 cm inscribed in a sector SPT of a circle at centre P.  The straight lines, SP and TP, are tangents to the circle at point Q and point R, respectively.

[Use p= 3.142]
Calculate
(a) the length, in cm, of the arc ST,
(b) the area, in cm2, of the shaded region.


Solution:
(a)
For triangle  O P Q sin 30 = 8 O P O P = 8 sin 30 = 16  cm Radius of sector  S P T = 16 + 8 = 24  cm S P T = 60 × 3.142 180 = 1.047  radian Length of arc  S T = 24 × 1.047 = 25.14  cm


(b)
For triangle  O P Q : tan 30 = 8 Q P P Q = 8 tan 30 = 13.86  cm Q O R = 2 ( 60 ) = 120 Reflex angle  Q O R = 360 120 = 240 240 = 3.142 180 × 240 = 4.189  radian Area of shaded region = (   Area of  sector  S P T ) ( Area of major    sector  O Q R ) ( Area of triangle  O P Q  and  O P R ) = 1 2 ( 24 ) 2 ( 1.047 ) 1 2 ( 8 ) 2 ( 4.189 ) 2 ( 1 2 × 8 × 13.86 ) = 301.54 134.05 110.88 = 56.61  cm 2

Short Questions (Question 3 & 4)


Question 3:
Diagram below shows a circle with centre O.
The length of the minor arc is 16 cm and the angle of the major sector AOB is 290o.
Using  π = 3.142, find
(a) the value of  θ, in radians. (Give your answer correct to four significant figures)
(b) the length, in cm, of the radius of the circle.

Solution:
(a) 
Angle of the minor sector AOB
= 360o 290o
= 70o
= 70o × 3.142 180
= 1.222 radians

(b) 
Using s =
r × 1.222 = 16
radius, r = 13.09 cm


Question 4:
Diagram below shows sector OPQ with centre and sector PXY with centre P.
Given that OQ = 8 cm, PY = 3 cm ,  ∠ XPY = 1.2 radians and the length of arc PQ = 6cm ,
calculate
( a)  the value of θ , in  radian ,
( b)  the area, in cm2 , of the shaded region .

Solution:
(a) s = θ
 6 = 8 θ
 θ = 0.75 rad

(b) 
Area of the shaded region
= Area of sector OPQ – Area of sector PXY
= 1 2 ( 8 ) 2 ( 0.75 ) 1 2 ( 3 ) 2 ( 1.2 )
= 24 – 5.4
= 18.6 cm2

Short Questions (Question 1 & 2)


Question 1:


The figure shows the sector OCB of radius 13 cm at the centre O. The length of the arc CB = 5.2 cm. Find
(a) the angle in radians,
(b) the perimeter of the shaded region.

Solution:
(a)
s = r θ 5.2 = 13 ( C O B ) C O B = 0.4  radian

(b)
cos C O B = O A O C cos 0.4 = O A 13  (change calculator to Rad mode) O A = 11.97  cm A B = 13 11.97 = 1.03  cm C A = 13 2 11.97 2 C A = 5.07  cm

Perimeter of the shaded region = 5.07 + 1.03 + 5.2 = 11.3 cm.



Question 2:


The figure shows the sector AOB of a circle, centre O and radius 5 cm. The length of the arc AB is 6 cm. Find the area of:
(a) the sector AOB,
(b) the shaded region.

Solution:
(a) Arc AB = 6cm
  s = θ
  6 = 5 θ
θ = 6/5 rad

Area of sector  A O B = 1 2 r 2 θ = 1 2 ( 5 ) 2 ( 6 5 ) = 15 c m 2

(b)
Area of shaded region = 1 2 r 2 ( θ sin θ )   ( change calculator to Rad mode ) = 1 2 ( 5 ) 2 ( 6 5 sin 6 5 ) = 3.35  cm 2

8.3 Area of a Sector of a Circle

8.3 Area of a Sector of a Circle
(A) Area of a Sector of a Circle

1. If a circle divided into two sectors of different sizes, the smaller sector is known as the minor sector while the larger sector is known as the major sector.



2. If AOB is the area of a sector of a circle, of radius r, that subtends an angle θ radians, at the centre O, then




Example 1:
In the above diagram, find the area of the sector OAB.

Solution:
Area of the sector OAB
= 1 2 r 2 θ = 1 2 ( 10 ) 2 ( 0.354 ) = 17.7  cm 2


(B) To Calculate the Area of a Segment of a Circle




Example 2:


The above diagram shows a sector of a circle, with centre O and a radius 6 cm. The length of the arc AB is 8 cm. Find
(i) AOB
(ii) the area of the shaded segment.


Solution:
(i) Length of the arc AB = 8 cm
rθ = 8
6θ = 8
θ = 1.333 radians
AOB = 1.333 radians

(ii)
the area of the shaded segment
= 1 2 r 2 ( θ sin θ ) = 1 2 ( 6 ) 2 ( 1.333 sin 1.333 r ) = 1 2 ( 36 ) ( 1.333 0.972 ) = 6.498  cm 2

8.2 Length of an Arc of a Circle

(A) Formulae for Length and Area of a Circle



r = radius, A= area, s = arc length, q = angle, l = length of chord



(B) Length of an Arc of a Circle




Example 1:
An arc, AB, of a circle of radius 5 cm subtends an angle of 1.5 radians at the centre.  Find the length of the arc AB.

Solution: 
s = rθ
Length of the arc AB = (5)(1.5) = 7.5 cm



Example 2:
An arc, PQ, of a circle of radius 12 cm subtends an angle of 30° at the centre.  Find the length of the arc PQ. 

Solution: 
Length of the arc PQ
= 12 × 30 × π 180 = 6.283  cm



Example 3:

In the above diagram, find
(i) length of the minor arc AB
(ii) length of the major arc APB

Solution: 
(i) length of the minor arc AB = rθ
= (7)(0.354)
= 2.478 cm

(ii) Since 360o = 2π radians, the reflex angle AOB
= (2π – 0.354) radians.
Length of the major arc APB
= 7 × (2π – 0.354)
= 7 × [(2)(3.1416) – 0.354]
= 7 × 5.9292
= 41.5044 cm

Long Questions (Question 5 & 6)


Question 5:
The table shows the cumulative frequency distribution for the distance travelled by 80 children in a competition.



(a) Based on the table above, copy and complete the table below.


(b) Without drawing an ogive, estimate the interquartile range of this data.


Solution:
(a)


(b)
Interquartile range = Third Quartile – First Quartile

Third Quartile class, Q3 = ¾ × 80 = 60
Therefore third quartile class is the class 60 – 69.

First Quartile class, Q1= ¼ × 80 = 20
Therefore first quartile class is the class 30 – 39.

Interquartile Range = L Q 3 + ( 3 N 4 F f Q 3 ) c L Q 1 + ( N 4 F f Q 1 ) c = 59.5 + ( 3 4 ( 80 ) 59 10 ) 10 29.5 + ( 1 4 ( 80 ) 7 18 ) 10 = 59.5 + 1 ( 29.5 + 7.22 ) = 23.78



Question 6:
Table shows the daily salary obtained by 40 workers in a construction site.


Given that the median daily salary is RM35.5, find the value of x and of y.
Hence, state the modal class.


Solution:


Total workers = 40
22 + x + y = 40
x = 18 – y ------(1)

Median daily salary = 35.5
Median class is 30 – 39

m = L + ( N 2 F f m ) c 35.5 = 29.5 + ( 40 2 ( 4 + x ) y ) 10 6 = ( 16 x y ) 10 6 y = 160 10 x 3 y = 80 5 x ( 2 )

Substitute (1) into (2):
3y = 80 – 5(18 – y)
3y = 80 – 90 + 5y
–2y = –10
y = 5
Substitute y = 5 into (1)
x = 18 – 5 = 13
Thus x = 13 and y = 5.

The modal class is 20 – 29 daily salary (RM).

Long Questions (Question 3 & 4)


Question 3:
The mean of the data 1, a, 2a, 8, 9 and 15 which has been arranged in ascending order is b. If each number of the data is subtracted by 3, the new median is 4 7 b . Find
(a) The values of a and b,
(b) The variance of the new data.

Solution:
(a)
Mean  x ¯ = b 1 + a + 2 a + 8 + 9 + 15 6 = b 33 + 3 a = 6 b 3 a = 6 b 33 a = 2 b 11  ------(1) New median  = 4 b 7 ( 2 a 3 ) + ( 8 3 ) 2 = 4 b 7 2 a + 2 2 = 4 b 7 14 a + 14 = 8 b 7 a = 4 b 7  ------(2) Substitute (1) into (2), 7 ( 2 b 11 ) = 4 b 7 14 b 77 = 4 b 7 10 b = 70 b = 7 From (1),  a = 2 ( 7 ) 11 = 3


(b)

New data is (1 – 3), (3 – 3), (6 – 3), (8 – 3), (9 – 3), (15 – 3)
New data is  – 2, 0, 3, 5, 6, 12

Variance,  σ 2 = x 2 N x ¯ 2 σ 2 = ( 2 ) 2 + ( 0 ) 2 + ( 3 ) 2 + ( 5 ) 2 + ( 6 ) 2 + ( 12 ) 2 6 ( 2 + 0 + 3 + 5 + 6 + 12 6 ) 2 σ 2 = 218 6 16 = 20.333



Question 4:
A set of data consists of 20 numbers. The mean of the numbers is 8 and the standard deviation is 3.

(a) Calculate   x and x 2 .

(b) A sum of certain numbers is 72 with mean of 9 and the sum of the squares of these numbers of 800, is taken out from the set of 20 numbers. Calculate the mean and variance of the remaining numbers.

Solution:
(a)
Mean  x ¯ = x N 8 = x 20 x = 160 Standard deviation,  σ = x 2 N x ¯ 2 3 = x 2 N x ¯ 2 9 = x 2 20 8 2 x 2 20 = 73 x 2 = 1460


(b)
Sum of certain numbers,  M  is 72 with mean of  9 , 72 M = 9 M = 8 Mean of the remaining numbers = 160 72 20 8 = 7 1 3 Variance of the remaining numbers = 1460 800 12 ( 7 1 3 ) 2 = 55 53 7 9 = 1 2 9

Long Questions (Question 1 & 2)


Question 1:
Table shows the age of 40 tourists who visited a tourist spot.


Given that the median age is 35.5, find the value of
m and of n.
  
Solution:
Given that the median age is 35.5, find the value of m and of n.


22 + m + n = 40
n = 18 – m -----(1)
Given median age = 35.5, therefore median class = 30 – 39

35.5 = 29.5 + ( 20 ( 4 + m ) n ) × 10 6 = ( 16 m n ) × 10
6n = 160 – 10m
3n = 80 – 5m -----(2)

Substitute (1) into (2).
3 (18 – m) = 80 – 5m
54 – 3m = 80 – 5m
2m = 26
m = 13

Substitute m = 13 into (1).
n = 18 – 13
n = 5

Thus m = 13, n = 5.



Question 2:
A set of examination marks x1, x2, x3, x4, x5, x6 has a mean of 6 and a standard deviation of 2.4.
(a) Find
(i) the sum of the marks, Σ x ,
(ii) the sum of the squares of the marks, Σ x 2 .

(b)
Each mark is multiplied by 2 and then 3 is added to it.
Find, for the new set of marks,
(i) the mean,
(ii) the variance.

Solution:
(a)(i)
Given mean = 5 Σ x 6 = 6 Σ x = 36

(a)(ii)
Given  σ = 2.4 σ 2 = 2.4 2 Σ x 2 n X ¯ 2 = 5.76 Σ x 2 6 6 2 = 5.76 Σ x 2 6 = 41.76 Σ x 2 = 250.56

(b)(i)
Mean of the new set of numbers
= 6(2) + 3
= 15

(b)(ii) 
Variance of the original set of numbers
 = 2.42 = 5.76

Variance of the new set of numbers
= 22 (5.76)
= 23.04