5.2b Change of Base of Logarithms

Change of Base of Logarithms

    log a b= log c b log c a          and       log a b= 1 log b a      

Example 1
:
Find the value of the following:
a. log 25 100
b. log 3 0.45

Answer:
(a)   log 25 100= log 10 100 log 10 25 = log 10 10 2 log 10 25 = 2 1.3979 =1.431 (b)   log 3 0.45= log 10 0.45 log 10 3 = 0.3468 0.4771 =0.727



Example 2
Find the value of the following.
(a) log 4 8
(b) log 125 5
(c) log 81 27
(d) log 16 64





5.2a Laws of Logarithms


5.2a Laws of Logarithms

  Law 1:   log a x y = log a x + log a y   Example:   log 5 25 x = log 5 25 + log 5 x   Beware!!   log a x + log a y log a ( x + y )   

  Law 2:   log a ( x y ) = log a x log a y      Example:   log 5 x 25 = log 5 x log 5 25   Beware!!   log a x y log a x log a y   

  Law 3:   log a x m = m log a x   Example:   log 5 y 5 = 5 log 5 y   Beware!!    ( log a x ) 2 2 log a x   


5.2 Logarithms

5.2 Logarithms

N = a x log a N = x log a N = x is called the logarithmic form and N = a x is the index or exponential form.



Note:
  1. The logarithm of a negative number is not defined.
  2. log in the calculator denotes log 10 or common logarithm.
  3. log 10 may be written as lg.
  4. If the base is other than 10, the base should be specified, e.g. log 3 81

5.1 Indices and Laws of Indices (Part 2)


5.1 Indices and Laws of Indices (Part 2)

(C) Fractional Indices
   a 1 n  is a  n th root of  a .    a 1 n = a n    a m n  is a  n th root of  a m .    a m n = a m n

Example 1:
Find the value of the followings:
(a) 81 1 2 (b) 64 1 3 (c) 625 1 4

Solution:
(a) 81 1 2 = 81 = 9 (b) 64 1 3 = 64 3 = 4 (c) 625 1 4 = 625 4 = 5

Example 2:
Find the value of the followings:
(a)  16 3 2 (b)  ( 27 64 ) 2 3

Solution:
(a)  16 3 2 = ( 16 1 2 ) 3 = 4 3 = 64 (b)  ( 27 64 ) 2 3 = ( 27 64 3 ) 2 = ( 3 4 ) 2 = 9 16



(D) Laws of Indices

   a m × a n = a m + n   Example:    3 3 × 3 2    = 3 3 + 2 = 3 5 = 243   


   a m ÷ a n = a m n    or    a m a n = a m n , a 0      Example:    3 3 ÷ 3 2    = 3 3 2 = 3 1 = 3   or    3 3 3 2 = 3 3 2 = 3 1 = 3


   ( a m ) n = a m n   Example:    ( 7 3 ) 4 = 7 3 × 4 = 7 12   


   ( a b ) n = a n b n   Example:    ( 15 ) 3 = ( 5 × 3 ) 3 = 2 3 × 3 3     


   ( a b ) n = a n b n ,   b 0   Example:    ( 3 5 ) 4 = 3 4 5 4 = 81 625   

Indices and Laws of Indices (Part 1)


Positive Integral Indices
When a real number a is multiplied by itself n times, the result is the nth power of a.

Example:  5×5×5×5 = 5(5 to the power of 4)

In general, if a is any real number and n is a positive integer, then


The integer n is called the index or exponent and a is the base.



5.1 Indices and Laws of Indices (Part 1)
(A) Zero Indices
The zero index of any number is equal to one.

  a 0 = 1, where a ≠ 0

Example 1:
Find the value of the followings:
(a) 2500
(b) 0.5130
(c)  ( 2 7 ) 0 (d)  ( 11 1 25 ) 0

Solution:
(a) 2500 = 1
(b) 0.5130 = 1
(c)  ( 2 7 ) 0 = 1 (d)  ( 11 1 25 ) 0 = 1



(B) Negative Integral Indices

   a n  is a reciprocal of  a n .      a n = 1 a n

Example 2:
Find the value of the followings:
(a) 102 -1
(b)  –6 -3
(c)  ( 1 3 ) 4 (d)  ( 2 5 ) 2 (e)  ( 2 5 ) 4

Solution:
(a)  102 1 = 1 102 (b)  6 3 = 1 6 3 = 1 216 (c)  ( 1 3 ) 4 = ( 3 ) 4 = 81 (d)  ( 2 5 ) 2 = ( 5 2 ) 2 = 25 4 (e)  ( 2 5 ) 4 = ( 5 2 ) 4 = 625 16

Quadratic Functions, SPM Practice (Long Questions)


Question 3:
Given that the quadratic function f(x) = 2x2px + p has a minimum value of –18 at x = 1.
(a) Find the values of p and q.
(b) With the value of p and q found in (a), find the values of x, where graph f(x) cuts the x-axis.
(c) Hence, sketch the graph of f(x).

Solution:
(a)
f( x )=2 x 2 px+q =2[ x 2 p 2 x+ q 2 ] =2[ ( x+ p 4 ) 2 ( p 4 ) 2 + q 2 ] =2[ ( x p 4 ) 2 p 2 16 + q 2 ] =2 ( x p 4 ) 2 p 2 8 +q


p 4 =1( 1 ) and  p 2 8 +q=18( 2 ) From( 1 ),p=4. Substitute p=4 into ( 2 ): ( 4 ) 2 8 +q=18    16 8 +q=18  q=18+2    =16


(b)
f( x )=2 x 2 4x16 f( x )=0 when it cuts x-axis 2 x 2 4x16=0 x 2 2x8=0 ( x4 )( x+2 )=0 x=4,2 Graph f( x ) cuts x-axis at x=2 and x=4.

(c)

Quadratic Functions, SPM Practice (Short Questions)


Question 3:
The straight line y = 5x – 1 does not intersect with the curve y = 2x2 + x + h.
Find the range of values of h.

Solution:
y=5x1         ...... (1) y=2 x 2 +x+h ...... (2) Substitute (1) into (2), 5x1=2 x 2 +x+h 2 x 2 +x+h5x+1=0 2 x 2 4x+h+1=0                   b 2 4ac<0 ( 4 ) 2 4( 2 )( h+1 )<0              168h8<0                             8<8h                             h>1

Question 4:
Find the maximum value of the function 5 – x – 2x2 , and the corresponding value of x.

Solution:
5x2 x 2 =2 x 2 x+5 =2[ x 2 + 1 2 x 5 2 ] =2[ x 2 + 1 2 x+ ( 1 4 ) 2 ( 1 4 ) 2 5 2 ] =2[ ( x+ 1 4 ) 2 1 16 5 2 ] =2[ ( x+ 1 4 ) 2 41 16 ] =2 ( x+ 1 4 ) 2 +5 1 8


5x2 x 2  has a maximum value when 2 ( x+ 1 4 ) 2 =0               x= 1 4 The maximum value of 5x2 x 2  is 5 1 8 .