Quadratic Equations Long Questions (Question 11 – 13)

Question 11:
Solve the following quadratic equation:
5x+3x212x=6

Solution:
5x+3x212x=65x+3x2=612x3x2+5x+12x6=03x2+17x6=0(3x1)(x+6)=03x1=0     or     x+6=0     3x=1                   x=6       x=13                  x=6


Question 12:
Diagram above shows a rectangle ABCD.
(a) Express the area of ABCD in terms of n.
(b) Given the area of ABCD is 60 cm2, find the length of AB.
 
Solution:
(a)
Area of ABCD
= (n + 7) × n
= (n2+ 7n) cm2

(b)
Given the area of ABCD = 60
n2+ 7n = 60
n2+ 7n – 60 = 0
(n – 5) (n + 12) = 0
= 5 or    n = – 12 (not accepted)
 
When n = 5,
Length of AB = 5 + 7 = 12 cm



Question 13 (4 marks):
Solve the following quadratic equation:
23x5=x3x1

Solution:
23x5=x3x12(3x1)=x(3x5)6x+2=3x25x3x25x+6x2=03x2+x2=0(3x2)(x+1)=03x2=0     or     x+1=0x=23     or     x=1

SPM Practice (Paper 1)

Question 14:
Show that 6x62kx2=x2 has no real roots if k>14.

Solution:




Question 15:
The quadratic equation x2+px+q=0 has roots –2 and 6. Find
(a) the value of p and of q,
(b) the range of values of r for which the equation x2+px+q=r has no real roots.

Solution:




SPM Practice (Paper 1)


Question 9:
The roots of the equation 6x2+hx+1=0 are α and β, whereas 3α and 3β are the roots of the equation 2x2x+k=0 . Find the value of h and k.

Solution:
6x2+hx+1=0a=6, b=h, c=1Roots=α,βsor:α+β=baα+β=h6.........(1)por:αβ=caαβ=16.........(2)2x2x+k=0a=2, b=1, c=kRoots=3α, 3βsor:3α+3β=ba3(α+β)=(1)2α+β=16.........(3)por:3α(3β)=ca9αβ=k2k=18αβ.........(4)Substitute (3) into (1)α+β=h616=h6h=1Substitute (2) into (4)k=18αβk=18(16)k=3




Question 10:
Find the range of values of p for which the equation 2x2+5x+3p=0 has two real distinct roots.

Solution:

SPM Practice (Paper 1)


Question 3:
Solve the following quadratic equations by using quadratic formula. Give your answer in four significant figures.
(a) (x+1)(x5)=15(b) x2+3x2x2x1=3

Solution:








Question 4:
If the roots of 2x2+4x1=0 are α and β, find the equations whose roots are
(a) α2,β2(b) αβ,βα

Solution:







Question 5:
Write and simplify the equation whose roots are double the roots of 3x25x1=0 , without solving the given equation.

Solution:


Quadratic Equations, SPM Practice (Paper 2)


2.10.3 Quadratic Equations, SPM Practice (Paper 2)

Question 5:
Given 3t and (t – 7) are the roots of the quadratic equation 4x2 – 4x + m = 0 where m is a constant.
(a)  Find the values of t and m.
(b)  Hence, form the quadratic equation with roots 4t and 2t + 6.

Solutions:
(a)
Given 3t and (t – 7) are the roots of the quadratic equation 4x2 – 4x + m = 0
a = 4, b = – 4, c = m
Sum of roots = ba  
3t + (t– 7) = 44  
3t + t– 7 = 1
4t = 8
t = 2

Product of roots = ca  
3t (t– 7) = m4  
4 [3(2) (2 – 7)] = m ← (substitute t = 2)
4 [3(2) (2 – 7)] = m
4 (–30) = m
m = –120

(b)
t = 2
4t = 4(2) = 8
2t + 6 = 2(2) + 6 = 10

Sum of roots = 8 + 10 = 18
Product of roots = 8(10) = 80

Using the formula, x2– (sum of roots)x + product of roots = 0
Thus, the quadratic equation is,
x2 – 18x + 80 = 0

Quadratic Equations, SPM Practice (Paper 2)


Question 4:
It is given α and β are the roots of the quadratic equation x (x – 3) = 2k – 4, where k is a constant.
(a) Find the range of values of k if αβ.(b) Given α2 and β2 are the roots of another quadratic equation     2x2+tx4=0, where t is a constant, find the value of t and of k.

Solution:
(a)x(x3)=2k4x23x+42k=0a=1, b=3, c=42k                   b24ac>0(3)24(1)(42k)>0               916+8k>0                            8k>7                              k>78

(b)From the equation x23x+42k=0,α+β=ba         =31         =3.............(1)αβ=ca    =42k1    =42k.............(2)From the equation 2x2+tx4=0,α2+β2=t2α+β=t.............(3)α2×β2=42αβ=8.............(4)Substitute (1)=(3),3=tt=3Substitute (2)=(4),42k=84+8=2kk=6

Quadratic Equations, SPM Practice (Paper 2)


2.10.2 Quadratic Equations, SPM Practice (Paper 2)

Question 3:
If α and β are the roots of the quadratic equation 3x2 + 2x– 5 = 0, form the quadratic equations that have the following roots.
(a) 2α and 2β(b) (α+2β) and (β+2α)

Solution:
3x2 + 2x – 5 = 0
a = 3, b = 2, c = –5
The roots are α and β.
α+β=ba=23αβ=ca=53

(a)
The new roots are 2αand2β.Sum of new roots=2α+2β=2β+2ααβ=2(α+β)αβ=2(23)53=45

Product of new roots=(2α)(2β)=4αβ=453=125

Using the formula, x2– (sum of roots)x + product of roots = 0
The new quadratic equation is
x2(45)x+(125)=0
5x2 – 4x– 12 = 0



(b)
The new roots are (α+2β)and(β+2α).Sum of new roots=(α+2β)+(β+2α)
=α+β+(2α+2β)=α+β+2α+2βαβ=α+β+2(α+β)αβ=45+2(45)125=4523=215
Product of new roots=(α+2β)(β+2α)=αβ+2+2+4αβ
=125+4+4125=125+453=115

The new quadratic equation is
x2(215)x+(115)=0
15x2 – 2x– 1 = 0

Quadratic Equations, SPM Practice (Paper 2)



Question 2:
Given α and β are two roots of the quadratic equation (2x + 5)(x + 1) + p = 0 where αβ = 3 and p is a constant.
Find the value p, α and of β.

Solutions:
(2x + 5)(x + 1) + p = 0
2x2 + 2x + 5x + 5 + p = 0
2x2 + 7x + 5 + p = 0
*Compare with, x2– (sum of roots)x + product of roots = 0
x2+72x+5+p2=0divide both sides with 2
Product of roots, αβ = 3
5+p2=3  
5 + p = 6
p = 1

Sum of roots = 72  
  α+β=72  (1)and αβ=3   (2)from (2), β=3α   (3)Substitute (3) into (1),α+3α=72  

2+ 6 = 7α ← (multiply both sides with 2α)
2+ 7α + 6 = 0
(2α + 3)(α + 2) = 0
2α + 3 = 0   or α + 2 = 0
α=− 3 2    α = –2

Substitute α=32 into (3),β=332=3(23)=2

Substitute α = –2 into (3),
β=32


Quadratic Equations, SPM Practice (Paper 2)


2.10.1 Quadratic Equations, SPM Practice (Paper 2)

Question 1:
(a)  Find the values of k if the equation (1 – k) x2– 2(k + 5)x + k + 4 = 0 has real and equal roots.
Hence, find the roots of the equation based on the values of k obtained.
(b)  Given the curve y = 5 + 4x x2 has tangen equation in the form y = px + 9. Calculate the possible values of p.

Solutions:
(a)
For equal roots,
b2 – 4ac = 0
[–2(k + 5)] 2 – 4(1 – k)( k + 4) = 0
4(k + 5) 2 – 4(1 – k)( k + 4) = 0
4(k2 + 10k + 25) – 4(4 – 3k k2) = 0
4k2 + 40k + 100 – 16 + 12k + 4k2 = 0
8k2 + 52k + 84 = 0
2k2 + 13k + 21 = 0
(2k + 7) (+ 3) = 0
k = 7 2 ,   3

If k = 7 2  , the equation is
( 1 + 7 2 ) x 2 2 ( 7 2 + 5 ) x 7 2 + 4 = 0 9 2 x 2 3 x + 1 2 = 0  

9x2 – 6x + 1 = 0
(3x – 1) (3x – 1) = 0
x =

If k = –3, the equation is
(1 + 3)x 2 – 2(–3 + 5)x – 3 + 4 = 0
4x2 – 4x + 1 = 0
(2x – 1) (2x – 1) = 0
x = ½

(b)
y = 5 + 4x x2 ----- (1)
y = px + 9 ---------- (2)
(1)  = (2), 5 + 4x x2= px + 9
x2 + px – 4x + 9 – 5 = 0
x2 + (p – 4)x + 4 = 0

Tangen equation only has one intersection point with equal roots.
b2 – 4ac = 0
(p – 4)2 – 4(1)(4) = 0
p2 – 8p + 16 – 16 = 0
p2 – 8p = 0
p (p – 8) = 0
Therefore, p = 0 and p = 8.

2.2a Solving Quadratic Equations – Factorisation

2.4.1 Solving Quadratic Equations – Factorisation
1. If a quadratic equation can be factorised into a product of two factors such that

(x – p)(x – q) = 0

Hence
 x – p = 0   or  x – q = 0
   x = p   or x = q

p and q  are the roots of the equation.

Notes
1.The equation must be written in general form ax2 + bx+ c = 0 before factorisation.
2. This method can only be used if the quadratic expression can be factorised completely.



Example 1:
Find the roots of the quadratic equations
(a) 
x (2x − 8) = 0 
(b) 
x2 −16x = 0
(c) 
3x2 − 75x = 0
(d) 
5x2 − 100x = 25x

Solution:
(a) 
x (2x − 8) = 0 
x = 0  or  2x − 8 = 0
2x − 8 = 0
2x = 8
x= 4
x = 0  or  x = 4

(b)
x2 −16x = 0
x (x − 16) = 0 
x = 0  or  x − 16 = 0
x = 0  or  x = 16

(c) 
3x2 − 75x = 0
3x (x − 25) = 0 
3x = 0  or  x − 25 = 0
x = 0  or  x = 25

(d) 
5x2 − 100x = 25x
5x2 − 100x − 25x = 0
5x2 − 125x = 0
x (5x − 125) = 0 
x = 0  or  5x − 125 = 0
5x = 125
x = 25
x = 0  or  x = 25



Example 2:
Solve the following quadratic equations
(a) 
x2 4x 5 = 0
(b) 1 5x + 2x2 = 4

Solution:
(a) 
x2 4x 5 = 0
(x – 5) (x + 1) = 0
x – 5 = 0  or  x + 1 = 0
x = 5  or  x = –1

(b)
1 5x + 2x2 = 4
2x2 5x + 1 – 4 = 0
2x2 5x – 3 = 0
(2x + 1) (x – 3) = 0
2x + 1= 0  or  x – 3 = 0
2x = –1  or  x = 3
x = –½  or  x = 3