Long Question (Question 10)


Question 10 (5 marks):
Solve the following simultaneous equations:
x – 3y = 1,
x2 + 3xy + 9y2 = 7


Solution:
x3y=1...................( 1 ) x 2 +3xy+9 y 2 =7...................( 2 ) From ( 1 ):x=3y+1...................( 3 ) Substitute ( 3 ) into ( 2 ): ( 3y+1 ) 2 +3( 3y+1 )y+9 y 2 =7 9 y 2 +6y+1+9 y 2 +3y+9 y 2 7=0 27 y 2 +9y6=0 9 y 2 +3y2=0 ( 3y1 )( 3y+2 )=0 y= 1 3  or  2 3 Substitute y into ( 3 ): When y= 1 3 x=3( 1 3 )+1=2 When y= 2 3 x=3( 2 3 )+1=1 Hence, the solutions are x=2,y= 1 3  or x=1,y= 2 3 .


Long Question (Question 9)


Question 9 (7 marks):
Diagram shows the plan of a rectangular garden ABCD. The garden consists of a semicircular pond ATD and grassy area ABCDT.
It is given that DC = 6y metre and BC = 7x metre, xy. The area of the rectangular garden ABCD is 168 metre2 and the perimeter of the grassy area is 60 metre. The pond with uniform depth contains 15.4 metre3 of water.
By using  π= 22 7 , find the depth, in metre, of water in the pond.

Solution:
Area of ABCD=168 ( 6y )( 7x )=168 42xy=168 xy=4...................( 1 ) Perimeter of grassy area=60 6y+6y+7x+( 1 2 × 2 × 22 11 7 × 7 x 2 )=60 12y+18x=60 2y+3x=10...................( 2 ) From ( 1 ):xy=4 x= 4 y ...................( 3 ) Substitute (3) into (2): 2y+3( 4 y )=10 2 y 2 +12=10y y 2 5y+6=0 ( y2 )( y3 )=0 y2=0    y=2     or     y3=0 y=3 Substitute the values of y into (3): When y=2 x= 4 2 =2 ( ignored, xy ) When y=3 x= 4 3 Given volume of water=15.4 1 2 ( 22 7 ) ( 7x 2 ) 2 d=15.4 1 2 ( 22 7 ) [ 7( 4 3 ) 2 ] 2 d=15.4 11 7 ( 14 3 ) 2 d=15.4 308 9 d=15.4 d=0.45 m Thus, the depth of water in the pond is 0.45 m.


4.1 Simultaneous Equations


4.1 Simultaneous Equations

(A) Steps in solving simultaneous equations:
  1. For the linear equation, arrange so that one of the unknown becomes the subject of the equation.
  2. Substitute the linear equation into the non-linear equation.
  3. Simplify and expressed the equation in the general form of quadratic equation a x 2 + b x + c = 0
  4. Solve the quadratic equation. 
  5. Find the value of the second unknown by substituting the value obtained into the linear equation.

Example:
Solve the following simultaneous equations.
y + x = 9 x y = 20

Solution:
For the linear equation, arrange so that one of the unknown becomes the subject of the equation.
y + x = 9 y = 9 x

Substitute the linear equation into the non-linear equation.
x y = 20 x ( 9 x ) = 20 9 x x 2 = 20

Simplify and expressed the equation in the general form of quadratic equation a x 2 + b x + c = 0
9 x x 2 = 20 x 2 9 x + 20 = 0

Solve the quadratic equation. 
x 2 9 x + 20 = 0 ( x 4 ) ( x 5 ) = 0 x = 4  or  x = 5

Find the value of the second unknown by substituting the value obtained into the linear equation.
When  x = 4 , y = 9 x = 9 4 = 5 When  x = 5 , y = 9 x = 9 5 = 4

Long Questions (Question 7 & 8)


4.2.4 Simultaneous Equations, Long Questions 
Question 7:
Solve the following simultaneous equations.
5y – 6x= 2
4 y x 3 x y = 4.

Solution:
5y – 6x= 2 ----- (1)
4 y x 3 x y = 4  ------- (2) From (1), y = 2 + 6 x 5

Substitute (3) into (2),
4 ( 2 + 6 x 5 ) x 3 x ( 2 + 6 x 5 ) = 4 8 + 24 x 5 x 15 x 2 + 6 x = 4 ( 8 + 24 x ) ( 2 + 6 x ) ( 15 x ) ( 5 x ) 5 x ( 2 + 6 x ) = 4

16 + 48x + 48x + 144x2 – 75x2 = 20x (2 + 6x)
69x2 + 96x + 16 = 40x + 120x2
51x2 – 56x – 16 = 0
(3x – 4)(17x + 4) = 0
3x – 4 = 0 or 17x + 4 = 0
x = 4 3   or    x = 4 17
  

Substitute  x = 4 3  into (3), y = 2 + 6 ( 4 3 ) 5 = 2

Substitute  x = 4 17  into (3), y = 2 + 6 ( 4 17 ) 5 = 2 17

The solutions are  ( 4 3 , 2 )  and  ( 4 17 , 2 17 ) .




Question 8:
Solve the following simultaneous equations.
x+2y=1 2 x 2 + y 2 +xy=5
Give your answer correct to three decimal places.

Solution:
x+2y=1..........( 1 ) 2 x 2 + y 2 +xy=5..........( 2 ) x=12y..........( 3 ) Substitute ( 3 ) into ( 2 ), 2 ( 12y ) 2 + y 2 +( 12y )y=5 2( 14y+4 y 2 )+ y 2 +y2 y 2 =5 28y+8 y 2 y 2 +y5=0 7 y 2 7y3=0 a=7,b=7,c=3 x= b± b 2 4ac 2a y= ( 7 )± ( 7 ) 2 4( 7 )( 3 ) 2( 7 ) y= 7± 133 14 y=1.324  or  0.324 From x=12y When y=1.324,  x=12( 1.324 )=1.648 When y=0.324,  x=12( 0.324 )=1.648 The solutions are ( 1.648,1.324 ) and ( 1.648,0.324 ).

Long Questions (Question 5 & 6)


Question 5:

Lisa has a rectangular plot of land. She plants orchid and rears fish in the areas as shown on diagram above. The area used for planting orchid is 460 m2 and the perimeter of the rectangular fish pond is 48 m. Find the value of x and y.


Solution:
Area used for planting orchid = 460 m2
10 (30 – y) + xy = 460
300 – 10y + xy = 460
xy – 10y = 160
y (x – 10) = 160

y = 160 x 10  ------- (1)

Perimeter of the rectangular fish pond = 48 m
2 (x – 10) + 2 (30 – y) = 48
2x – 20 + 60 – 2y = 48
2x – 2y= 8
x y = 4
x = 4 + y ------ (2)


Substitute (2) into (1):
y = 160 x 10 y = 160 4 + y 10 y = 160 y 6 y 2 6 y 160 = 0 ( y 16 ) ( y + 10 ) = 0 y = 16   or    y = 10  (not accepted)

From (2),
When y = 16
x = 4 + 16 = 20



Question 6:

In the diagram above, PQRS is a rectangular piece of paper with an area of 112 cm2. A semicircle STR is cut from this piece of paper. The perimeter of the remaining piece of paper is 52 cm. Using  π = 22 7 , find the integer value of x and y.

Solution:
Area of the rectangle PQRS = 112 cm2
Therefore, (14x)(2y) = 112
 28xy= 112
 xy = 4 ------ (1)

Perimeter of PSTRQ = 52 cm
PS + QR + PQ + Length of arc STR = 52
2y + 2y + 14x + ½ (2πr) = 52
4y + 14x +   ( 22 7 ) ( 7 x ) = 52
4y + 14x + 22x = 52
4y + 36x = 52
y + 9x = 13 ------ (2)

From equation (2) : y = 13 – 9x ------ (3)

Substitute (3) into (1) :
x (13 – 9x) = 4
13x – 9x2 = 4
9x2 – 13x + 4 = 0
(x – 1)(9x – 4) = 0
x = 1   or   4 9  (not an interger, therefore not accepted)

From (3) :
When x = 1,
y = 13 – 9(1) = 4. 

Long Questions (Question 3 & 4)


Question 3:
Solve the following simultaneous equations.
3y – 2x= – 4
y2 + 4x2 = 2

Solution:
3y – 2x= – 4 -----(1)
y2 + 4x2= 2 -----(2)

From (1), y = 2 x 4 3  ------- ( 3 ) Substitute (3) into (2), ( 2 x 4 3 ) 2 + 4 x 2 = 2 ( 4 x 2 16 x + 16 9 ) + 4 x 2 = 2 4 x 2 16 x + 16 + 36 x 2 = 18     ( × 9 ) 40 x 2 16 x 2 = 0 20 x 2 8 x 1 = 0 ( 10 x + 1 ) ( 2 x 1 ) = 0 x = 1 10   or   x = 1 2 Substitute the values of  x  into (3), When  x = 1 10 , y = 2 ( 1 10 ) 4 3 = 1 2 5 When  x = 1 2 , y = 2 ( 1 2 ) 4 3 = 3 3 = 1 The solutions are  x = 1 10 ,   y = 1 2 5  and  x = 1 2 ,   y = 1.





Question 4:
Solve the simultaneous equations x – 3y = –1 and y + yx – 2x = 0.
Give your answers correct to three decimal places.

Solution:
x – 3y = –1 -----(1)
y + yx – 2x = 0 -----(2)
From (1),
x = 3y – 1 -----(3)
Substitute (3) into (2),
y + y (3y – 1) – 2(3y – 1)  = 0
y + 3y2y – 6y+ 2 = 0
3y2 – 6y + 2 = 0

a = 3 ,   b = 6 c = 2 y = b ± b 2 4 a c 2 a y = ( 6 ) ± ( 6 ) 2 4 ( 3 ) ( 2 ) 2 ( 3 ) y = 6 ± 12 6 y = 1.577  or 0 .423

Substitute the values of y into (3).
When y = 1.577,
x = 3 (1.577) – 1 = 3.731 (correct to 3 decimal places)

When y = 0.423,
x = 3 (0.423) – 1 = 0.269 (correct to 3 decimal places)

The solutions are x = 3.731, y = 1.577 and x = 0.269, y = 0.423.


Long Questions (Question 1 & 2)


Question 1:
Solve the following simultaneous equations.
y + 2 x = 2 2 x + 1 y = 5

 Solution:
y+2x=2(1) 2 x + 1 y =5(2) y=22x(3) substitute (3) into (2), 2 x + 1 22x =5 2( 22x )+x x( 22x ) =5 44x+x=5x( 22x ) 43x=10x10 x 2 10 x 2 13x+4=0 ( 5x4 )( 2x1 )=0 5x4=0     or     2x1=0 x= 4 5            or     x= 1 2 Substitute values of x into (3), When x= 4 5  ,  y=22( 4 5 )= 2 5 When x= 1 2 y=22( 1 2 )=1 The solutions are x= 4 5 , y= 2 5  and x= 1 2 , y=1




Question 2:
Solve the following simultaneous equations.
x – 3y + 5 = 3y + 5y2– 6 – x = 0

Solution:
x – 3y + 5 = 0
x = 3y – 5 -----(1)
3y + 5y2 – 6 – x = 0 -----(2)

Substitute (1) into (2),
3y + 5y2 – 6 – (3y – 5) = 0
3y + 5y2 – 6 – 3y + 5 = 0
5y2 – 1 = 0
5y2  = 1
y±0.447

Substitute the values of y into (1),
When y = 0.447
x = 3 (0.447) – 5
x = –3.659

When y = – 0.447
x = 3 (–0.447) – 5
x = –6.341

The solutions are x = –3.659, y = 0.447 and x = –6.341, y = – 0.447.

Simultaneous Equations (Example 1 & 2)


Example 1:
Solve the simultaneous equations.
x + 1 4 y = 1  and  y 2 8 = 4 x .

Solution:
x + 1 4 y = 1 ( 1 ) y 2 8 = 4 x ( 2 ) x = 1 1 4 y ( 3 )

Substitute (3) into (2),
y 2 8 = 4 ( 1 1 4 y ) y 2 8 = 4 4 4 y
y2 + y – 12 = 0
(y + 4)(y – 3) = 0
y = –4 or y = 3 

Substitute the values of y into (3),
when y=4,  x=1 1 4 (4)=2 when y=3,  x=1 1 4 (3)= 1 4 The solutions are x=2, y=4 and x= 1 4 , y=3


Example 2:
Solve the simultaneous equations 2x + y = 1 and 2x2+ y2 + xy = 5.
Correct your answer to three decimal places.

Solution:
2x + y = 1-----(1)
2x2 + y2+ xy = 5-----(2)

From (1),
y = 1 – 2x-----(3)

Substitute (3) into (2).
2x2 + (1 – 2x)2 + x(1 – 2x) = 5
2x2 + (1 – 2x)(1 – 2x) + x – 2x2 = 5
1 – 2x – 2+ 4x2 + x – 5 = 0
4x2 – 3x – 4 = 0

From  x = b ± b 2 4 a c 2 a a = 4 ,   b = 3 c = 4 x = ( 3 ) ± ( 3 ) 2 4 ( 4 ) ( 4 ) 2 ( 4 ) x = 3 ± 73 8 x = 0.693  or  1.443

Substitute the values of x into (3).
When x = –0.693,
y = 1 – 2 (–0.693) = 2.386 (correct to 3 decimal places)

When x = 1.443,
y = 1 – 2 (1.443) = –1.886 (correct to 3 decimal places)

The solutions are x = –0.693, y  = 2.386 and x = 1.443, y = –1.886.