(Long Questions) – Question 10


Question 11 (10 marks):
Solution by scale drawing is not accepted.
Diagram shows a quadrilateral PQRS on a horizontal plane.
VQSP is a pyramid such that PQ = 12 m and V is 5 m vertically above P.
Find
(a)QSR,
(b) the length, in m, of QS,
(c) the area, in m2, of inclined plane QVS.


Solution: 
(a)
sinQSR 20.5 = sin 64 o 22 sinQSR= sin 64 o 22 ×20.5 sinQSR=0.8375 QSR= 56 o 52'


(b)
QRS= 180 o 64 o 56 o 52'   = 59 o 8' QS sin 59 o 8' = 22 sin 64 o QS= 22 sin 64 o ×sin 59 o 8' QS=21.01 m


(c)


Q V 2 =P Q 2 +V P 2 QV= 12 2 + 5 2 QV=13 m S V 2 =P S 2 +V P 2 SV= 10 2 + 5 2 SV= 125  m QS=21.01 m 21.01 2 = 13 2 + ( 125 ) 2 2( 13 )( 125 )cosθ 26( 125 )cosθ=169+125441.42 cosθ= 169+125441.42 26( 125 ) cosθ=0.5071 θ= 120 o 28' Area of QVS = 1 2 ×13× 125 ×sin 120 o 28' =62.64  m 2


(Long Questions) – Question 9


Question 9 (10 marks):
Solution by scale drawing is not accepted.
Diagram shows a transparent prism with a rectangular base PQRS. The inclined surface PQUT is a square with sides 12 cm and the inclined surface RSTU is a rectangle. PTS is a uniform cross section of the prism. QST is a green coloured plane in the prism.


It is given that ∠PST = 37o and ∠TPS = 45o.
Find
(a) the length, in cm, of ST,
(b) the area, in cm2, of the green coloured plane.
(c) the shortest length, in cm, from point T to the straight line QS.


Solution:
(a)



ST sin 45 o = 12 sin 37 o ST= 12 sin 37 o ×sin 45 o ST=14.1 cm


(b)
Q T 2 =Q P 2 +P T 2 Q T 2 = 12 2 + 12 2 QT= 12 2 + 12 2 =16.97 cm PTS= 180 o 45 o 37 o = 98 o PS sin 98 o = 12 sin 37 o PS= 12 sin 37 o ×sin 98 o PS=19.75 cm Q S 2 =Q P 2 +P S 2 QS= Q P 2 +P S 2 QS= 12 2 + 19.75 2 QS=23.11 cm




Q S 2 =Q T 2 +S T 2 2( QT )( ST )cosQTS 23.11 2 = 16.97 2 + 14.1 2 2( 16.97 )( 14.1 )cosQTS cosQTS= 16.97 2 + 14.1 2 23.11 2 2( 16.97 )( 14.1 ) cosQTS= 47.28 478.55 QTS= 95.67 o Thus, area of green coloured plane QTS = 1 2 ( 16.97 )( 14.1 )sin 95.67 o =119.05  cm 2


(c)



Let the shortest length from point T to the straight line QS is h. Area of ΔQTS=119.05 1 2 ( h )( 23.11 )=119.05 h=10.3 cm


(Long Questions) – Question 8


Question 8:
Diagram below shows a cyclic quadrilateral PQRS.


(a) Calculate
(i) the length, in cm, of PR,
(ii) ∠PRQ.
(b) Find
(i) the area, in cm2, of ∆ PRS,
(ii) the short distance, in cm, from point S to PR.

Solution:
(a)(i)
P R 2 = 7 2 + 8 2 2( 7 )( 8 )cos 80 o P R 2 =11319.4486 PR= 93.5514 PR=9.6722 cm


(a)(ii)
In cyclic quadrilateral PQR+PSR=180 PQR+80=180 PQR= 100 o sinQPR 3 = sin100 9.6722 sinQPR=0.3055 QPR= 17 o 47' PRQ= 180 o 100 o 17 o 47'   = 62 o 13'


(b)(i)
Area of PRS = 1 2 ×7×8sin 80 o =27.5746  cm 2


(b)(ii)


Area of PRS=27.5746 1 2 ×9.6722×h=27.5746    h= 27.5746×2 9.6722  =5.7018 cm Shortest distance=5.7018 cm

(Long Questions) – Question 7


Question 7:
Diagram below shows a quadrilateral ABCD where the sides AB and CD are parallel. ∠BAC is an obtuse angle.

Given that AB = 14 cm, BC = 27 cm, ∠ACB = 30o and AB : DC = 7 : 3.
Calculate
(a) ∠BAC.
(b) the length, in cm, of diagonal BD.
(c) the area, in cm2, of quadrilateral ABCD.

Solution:
(a)
sinBAC 27 = sin 30 o 14 sinBAC= sin 30 o 14 ×27 sinBAC=0.9643  BAC= 74.64 o BAC ( obtuse )= 180 o 74.64 o  = 105.36 o


(b)
AB parallel with DC BAC=ACD BCD= 105.36 o + 30 o    = 135.36 o DC AB = 3 7 DC= 3 7 ×14 cm   =6 cm B D 2 = 27 2 + 6 2 2( 27 )( 6 )cosBCD B D 2 =765324cos 135.36 o B D 2 =995.54 BD=31.55 cm


(c)
ABC= 180 o 30 o 105.36 o    = 44.64 o A C 2 = 27 2 + 14 2 2( 27 )( 14 )cosABC A C 2 =925756cos 44.64 o A C 2 =387.08 AC=19.67 cm Area ABC = 1 2 ( 14 )( 27 )sin 44.64 o =132.80  cm 2 Area ACD = 1 2 ( 19.67 )( 6 )sin 105.36 o =56.90  cm 2 Area of quadrilateral ABCD =132.80+56.90 =189.7  cm 2

(Long Questions) – Question 6


Question 6:
Diagram below shows trapezium ABCD.
(a) Calculate
(i) ∠BAC.
(ii) the length, in cm, of AD.
(b) The straight line AB is extended to B’ such that BC = B’C.
(i) Sketch the trapezium AB’CD.
(ii) Calculate the area, in cm2, of ∆BB’C.  


Solution:
(a)(i)
5 2 = 4 2 + 7 2 2( 4 )( 7 )cosBAC 25=16+4956cosBAC 56cosBAC=40 cosBAC= 40 56  BAC= cos 1 40 56    = 44 o 25'


(a)(ii)
AD sinDCA = 7 sin 115 o AD sin 44 o 25' = 7 sin 115 o ( DCA=BAC )   AD= 7 sin 115 o ×sin 44 o 25'   AD=5.406 cm


(b)(i)




(b)(ii)
sinABC 7 = sin 44 o 25' 5 sinABC= sin 44 o 25' 5 ×7    = 78 o 28' ABC= 180 o 78 o 28' ABC= 101 o 32'( obtuse angle ) CBB'= 180 o 101 o 32'= 78 o 28' BCB'= 180 o 78 o 28' 78 o 28'= 23 o 4' Area of BB'C= 1 2 ×5×5× 23 o 4'  =4.898  cm 2

(Long Questions) – Question 5


Question 5:
The diagram below shows a triangle ABC.

(a) Calculate the length, in cm, of AC.
(b) A quadrilateral ABCD is now formed so that AC is a diagonal, ACD = 45° and AD = 14 cm. Calculate the two possible values of ADC.
(c) By using the acute ADC from (b), calculate
 (i) the length, in cm, of CD,
 (ii) the area, in cm2, of the quadrilateral ABCD


Solution:
(a)
Using cosine rule,
AC2 = AB2 + BC2 – 2 (AB)(BC) ABC
AC2 = 162 + 122 – 2 (16)(12) cos 70o
AC2 = 400 – 131.33
AC2 = 268.67
AC = 16.39 cm


(b)

Using sine rule, sin A D C 16.39 = sin 45 14 sin A D C = 16.39 × sin 45 14 sin A D C = 0.8278 A D C = 55.87  or  ( 180 55.87 ) A D C = 55.87  or 124 .13


(c)(i)
Acute angle of  A D C = 55.87 C A D = 180 45 55.87 = 79.13 C D sin 79.13 = 14 sin 45 C D = 14 × sin 79.13 sin 45 = 19.44  cm


(c)(ii)
Area of quadrilateral  A B C D = Area of  Δ   A B C + Area of  Δ   A C D = 1 2 ( 16 ) ( 12 ) sin 70 + 1 2 ( 16.39 ) ( 14 ) sin 79.13 = 90.21 + 112.67 = 202.88  cm 2

(Long Questions) – Question 4


Question 4:
Diagram below shows a quadrilateral PQRS.


(a) Find
(i) the length, in cm, of QS.
(ii) ∠QRS.
(iii) the area, in cm2, of the quadrilateral PQRS.
(b)(i) Sketch a triangle S’Q’R’ which has a different shape from triangle SQR such that S’R’ = SR, S’Q’ = SQ and ∠S’Q’R’ = ∠SQR.
(ii) Hence, state ∠S’R’Q’.

Solution:
(a)(i)
P=1807634=70 QS sin70 = 8 sin34 QS= 8×sin70 sin34  =13.44 cm

(a)(ii)
13.44 2 = 6 2 + 9 2 2( 6 )( 9 )cosQRS 108cosQRS= 6 2 + 9 2 13.44 2 cosQRS= 6 2 + 9 2 13.44 2 108  QRS= cos 1 ( 0.5892 )    = 126 o 6'

(a)(iii)
Area of PQRS =Area of PQS+Area of QRS =( 1 2 ×8×13.44×sin76 )+( 1 2 ×6×9×sin 126 o 6' ) =52.16+21.82 =73.98  cm 2


(b)(i)



(b)(ii)
S'R'Q'=S'RR'    =180 126 o 6'    = 53 o 54'

(Long Questions) – Question 3


Question 3:


The diagram shows a trapezium PQRS. PS is parallel to QR and QRS is obtuse. Find
(a) the length, in cm, of QS,
(b) the length, in cm, of RS,
(c) QRS,
(d) the area, in cm2, of triangle QRS.


Solution:
(a)
Q S sin P = P S sin Q Q S sin 85 = 13.1 sin 28 Q S = 13.1 × sin 85 sin 28 Q S = 27.8  cm

(b)
 RQS = 180o – 85o – 28o
 RQS = 67o
Using cosine rule,
RS2 = QR2 + QS2 – 2 (QR)(QS) RQS
RS2 = 6.42 + 27.82 – 2 (6.4)(27.8) cos 67o
RS2 = 813.8 – 139.04
RS2 = 674.76
RS = 25.98 cm

(c)
Using cosine rule, Q S 2 = Q R 2 + R S 2 2 ( Q R ) ( R S ) cos Q R S 27.8 2 = 6.4 2 + 25.98 2 2 ( 6.4 ) ( 25.98 ) cos Q R S 772.84 = 715.92 332.54 cos Q R S cos Q R S = 715.92 772.84 332.54 cos Q R S = 0.1712 Q R S = 99.86

(d)
Area of triangle QRS
= ½ (QR)(RS) sin R
= ½ (6.4) (25.98) sin 99.86o
= 81.91 cm2

(Long Questions) – Question 2


Question 2:
In the diagram below, ABC is a triangle. AGJB, AHC and BKC are straight lines. The straight line JK is perpendicular to BC.


It is given that BG= 40cm, GA = 33 cm, AH = 30 cm, GAH = 85o and JBK= 45o.
(a) Calculate the length, in cm of
  i.      GH
    ii.   HC
(b) The area of triangle GAH is twice the area of triangle JBK. Calculate the length, in cm, 
  of BK.
(c) Sketch triangle  which has a different shape from triangle ABC such that, A’B’ = AB
 A’C’ = AC and A’B’C’ = ABC.


Solution:
(a)(i)
Using cosine rule,
GH2 = AG2 + AH2 – 2 (AG)(AH) GAH
GH= 332+ 302 – 2 (33)(30) cos 85o
GH2 = 1089 + 900 – 172.57
GH2 = 1816.43
GH = 42.62 cm

(a)(ii)
A C D = 180 45 85 = 50 Using sine rule, A C sin 45 = 73 sin 50 A C = 73 × sin 45 sin 50 A C = 67.38  cm H C = 67.38 30 = 37.38  cm


(b)
Area of  Δ   G A H = 1 2 ( 33 ) ( 30 ) sin 85 = 493.12  cm 2 Let length of  B K = J K = x ×  Area of  Δ   J B K  = Area of  Δ   G A H 2 × [ 1 2 ( x ) ( x ) ] = 493.12 x 2 = 493.12 x = 22.21  cm B K = 22.21  cm


(c)

(Long Questions) – Question 1


Question 1:

The diagram shows a quadrilateral ABCD. The area of triangle BCD is 12 cm2 and BCD is acute. Calculate
(a) ∠BCD,
(b) the length, in cm, of BD,
(c) ABD,
(d) the area, in cm2, quadrilateral ABCD.


Solution:
(a) Given area of triangle BCD = 12 cm2
½ (BC)(CD) sin C = 12
½ (7) (4) sin C = 12
14 sin C = 12
sin C = 12/14 = 0.8571
C = 59o
BCD = 59o
 
(b)
Using cosine rule,
BD2 = BC2 + CD2 – 2 (7)(4) cos 59o
BD2 = 72+ 42 – 2 (7)(4) cos 59o
BD2 = 65 – 28.84
BD2 = 36.16
BD = 36.16
BD = 6.013 cm

(c)
Using sine rule,
A B sin 35 = 6.013 sin A 10 sin 35 = 6.013 sin A sin A = 6.013 × sin 35 10 sin A = 0.3449 A = 20.18 A B D = 180 35 20.18 A B D = 124.82

(d)

Area of quadrilateral ABCD
= Area of triangle ABD + Area of triangle BCD
= ½ (AB)(BD) sin B + 12 cm
= ½ (10) (6.013) sin 124.82 + 12
= 24.68 + 12
= 36.68 cm²