10.3 Area of Triangle


10.3 Area of Triangle

Example:
Calculate the area of the triangle above.

Solution:
A r e a = 1 2 a b sin C A r e a = 1 2 ( 7 ) ( 4 ) sin 40 o A r e a = 9  cm 2



Example:

Diagram above shows a triangle ABC, where AC = 8 cm and ∠C = 32o. Point D lies on straight line BC where BD = 10 cm and ∠ADB = 70o . Calculate
(a) the length, in cm, of CD,
(b) the area, in cm2 of ∆ ADC,
(c) the area, in cm2 of ∆ ABC,
(d) the length, in cm, of AB.

Solution:
(a)
ADC+ 70 o = 180 o ADC= 110 o CAD= 180 o 110 o 32 o CAD= 38 o Using Sine Rule, 8 sin 110 o = CD sin 38 o CDsin 110 o =8sin 38 o CD( 0.940 )=8( 0.616 ) CD=5.243

(b)
Area of ADC = 1 2 ( 8 )( 5.243 )sin 32 o =20.972( 0.530 ) =11.12  cm 2

(c)
Area of ABC = 1 2 ( 8 )( 10+5.243 )sin 32 o =60.972( 0.530 ) =32.315  cm 2

(d)
Use Cosine Rule for ABC, A B 2 = 15.243 2 + 8 2 2( 15.243 )( 8 )cos 32 o A B 2 =232.35+64206.83 A B 2 =89.52 AB=9.462 cm

10.2 The Cosine Rule


10.2 The Cosine Rule



The cosine rule can be used when
(i) two sides and the included angle, or
(ii) three sides of a triangle are given.


(A) If you know 2 sides and 1 angle between them [included angle] ⇒ Cosine rule

Example:


Calculate the length of AC, x, in cm for the triangle above.

Solution:
b 2 = a 2 + c 2 2 a c cos B x 2 = 4 2 + 7 2 2 ( 4 ) ( 7 ) cos 50 x 2 = 16 + 49 56 ( 0.6428 ) x 2 = 65 35.997 x 2 = 29.003 x = 5.385  cm


(B) If you know 3 sides ⇒ Cosine rule

Example:


Calculate ÐBAC for the triangle above.

Solution:
cos A = b 2 + c 2 a 2 2 b c cos B A C = 7 2 + 6 2 8 2 2 ( 7 ) ( 6 ) cos B A C = 0.25 B A C = cos 1 0.25 B A C = 75.52 o

10.1 The Sine Rule


10.1 The Sine Rule
In a triangle ABC in which the sides BC, CA and AB are denoted by a, b, and c as shown, and A, B, C are used to denote the angles at the vertices A, B, C respectively,



The sine rule can be used when
(i) two sides and one non-included angle or
(ii) two angles and one opposite side are given.


(A) If you know 2 angles and 1 side ⇒ Sine rule

Example:


Calculate the length, in cm, of AB.

Solution:
∠ACB = 180o – (50o + 70o) = 60o
A B sin 60 o = 4 sin 50 o A B = 4 × sin 60 o sin 50 o A B = 4.522  cm


(B) If you know 2 sides and 1 angle (but not between them) ⇒ Sine rule

Example:

Calculate ∠ACB.

Solution:
28 sin 54 o = 26 sin A C B sin A C B = 26 × sin 54 o 28 sin A C B = 0.7512 A C B = 48.7 o


(C) Case of ambiguity (2 possible triangles)

Example

Calculate ∠ACBθ.

Solution:
Two possible triangle with these measurement
AB = 26cm BC = 28 cm Ð BAC = 54o
26 sin θ = 28 sin 54 o sin θ = 0.7512 θ = sin 1 0.7512 θ = 48.7 o , 180 o 48.7 o θ = 48.7 o  (Acute angle) ,   131.3 o  (Obtuse angle)