10.3 Area of Triangle


10.3 Area of Triangle

Example:
Calculate the area of the triangle above.

Solution:
Area=12absinCArea=12(7)(4)sin40oArea=9 cm2



Example:

Diagram above shows a triangle ABC, where AC = 8 cm and ∠C = 32o. Point D lies on straight line BC where BD = 10 cm and ∠ADB = 70o . Calculate
(a) the length, in cm, of CD,
(b) the area, in cm2 of ∆ ADC,
(c) the area, in cm2 of ∆ ABC,
(d) the length, in cm, of AB.

Solution:
(a)
ADC+70o=180oADC=110oCAD=180o110o32oCAD=38oUsing Sine Rule,8sin110o=CDsin38oCDsin110o=8sin38oCD(0.940)=8(0.616)CD=5.243

(b)
Area of ADC=12(8)(5.243)sin32o=20.972(0.530)=11.12 cm2

(c)
Area of ABC=12(8)(10+5.243)sin32o=60.972(0.530)=32.315 cm2

(d)
Use Cosine Rule for ABC,AB2=15.2432+822(15.243)(8)cos32oAB2=232.35+64206.83AB2=89.52AB=9.462 cm

10.2 The Cosine Rule


10.2 The Cosine Rule



The cosine rule can be used when
(i) two sides and the included angle, or
(ii) three sides of a triangle are given.


(A) If you know 2 sides and 1 angle between them [included angle] ⇒ Cosine rule

Example:


Calculate the length of AC, x, in cm for the triangle above.

Solution:
b2=a2+c22accosBx2=42+722(4)(7)cos50x2=16+4956(0.6428)x2=6535.997x2=29.003x=5.385 cm


(B) If you know 3 sides ⇒ Cosine rule

Example:


Calculate ÐBAC for the triangle above.

Solution:
cosA=b2+c2a22bccosBAC=72+62822(7)(6)cosBAC=0.25BAC=cos10.25BAC=75.52o

10.1 The Sine Rule


10.1 The Sine Rule
In a triangle ABC in which the sides BC, CA and AB are denoted by a, b, and c as shown, and A, B, C are used to denote the angles at the vertices A, B, C respectively,



The sine rule can be used when
(i) two sides and one non-included angle or
(ii) two angles and one opposite side are given.


(A) If you know 2 angles and 1 side ⇒ Sine rule

Example:


Calculate the length, in cm, of AB.

Solution:
∠ACB = 180o – (50o + 70o) = 60o
ABsin60o=4sin50oAB=4×sin60osin50oAB=4.522 cm


(B) If you know 2 sides and 1 angle (but not between them) ⇒ Sine rule

Example:

Calculate ∠ACB.

Solution:
28sin54o=26sinACBsinACB=26×sin54o28sinACB=0.7512ACB=48.7o


(C) Case of ambiguity (2 possible triangles)

Example

Calculate ∠ACBθ.

Solution:
Two possible triangle with these measurement
AB = 26cm BC = 28 cm Ð BAC = 54o
26sinθ=28sin54osinθ=0.7512θ=sin10.7512θ=48.7o,180o48.7oθ=48.7o (Acute angle), 131.3o (Obtuse angle)