5.5.1a Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 2)

Example 3:
(a) Given that sinP= 3 5  and sinQ= 5 13 ,  such that P is an acute angle and Q is an obtuse angle, without using tables or a calculator, find the value of cos (P + Q).

(b) Given that sinA= 3 5  and sinB= 12 13 ,  such that A and B are angles in the third and fourth quadrants respectively, without using tables or a calculator, find the value of sin (A 
 B).

Solution:
(a)
sin P = 3 5 , cos P = 4 5 sin Q = 5 13 , cos Q = 12 13 cos ( P + Q ) = cos A cos B sin A sin B = ( 4 5 ) ( 12 13 ) ( 3 5 ) ( 5 13 ) = 48 65 15 65 = 63 65


(b)


sin A = 3 5 , cos A = 4 5 sin B = 5 13 , cos B = 12 13 s i n ( A B ) = s i n A cos B c o s A sin B = ( 3 5 ) ( 12 13 ) ( 4 5 ) ( 5 13 ) = 36 65 20 65 = 56 65

Short Question 19


Question 19 (4 marks):
It is given that cos α = t where t is a constant and 0o ≤ α ≤ 90o.
Express in terms of t
(a) sin (180o + α),
(b) sec 2α.

Solution:
(a)




sin( 180 o +α ) =sin180cosα+cos180sinα =0sinα =sinα = 1 t 2

(b)
sec2α= 1 cos2α  = 1 2 cos 2 α1  = 1 2 t 2 1


Long Question 6


Question 6 (10 marks):
(a) Prove that 2 tan x cos2 x = sin 2x.

(b) Hence, solve the equation 4 tan x cos2 x = 1 for 0 ≤ x ≤ 2π.

(c)(i) Sketch the graph of y = sin 2x for 0 ≤ x ≤ 2π.

(c)(ii) Hence, using the same axes, sketch a suitable straight line to find the number of solutions for the equation 4π tan x cos2 x = x – 2π for 0 ≤ x ≤ 2π.
State the number of solutions.

Solution: 
(a)

2tanx cos 2 x=sin2x Left hand side =2tanx cos 2 x =2× sinx cosx × cos 2 x =2sinxcosx =sin2x = Right hand side ( Proven )


(b)
4tanx cos 2 x=1, 0x2π 2( 2tanx cos 2 x )=1 2sin2x=1 sin2x= 1 2 Basic angle= π 6 2x= π 6 ,( π π 6 ),( 2π+ π 6 ),( 3π π 6 ) 2x= π 6 , 5π 6 , 13π 6 , 17π 6 x= π 12 , 5π 12 , 13π 12 , 17π 12



(c)(i)
y = sin 2x, 0 ≤ x ≤ 2π.




(c)(ii)
4πtanx cos 2 x=x2π 2π( 2tanx cos 2 x )=x2π 2πsin2x=x2π sin2x= x 2π 2π 2π sin2x= x 2π 1 y= x 2π 1


Number of solutions = 4

Long Question 5


Question 5 (10 marks):
( a ) Prove sin( 3x+ π 6 )sin( 3x π 6 )=cos3x ( b ) Hence, ( i ) solve the equation sin( 3x 2 + π 6 )sin( 3x 2 π 6 )= 1 2  for 0x2π  and give your answer in the simplest fraction form in terms of π radian. ( ii ) sketch the graph of y=sin( 3x+ π 6 )sin( 3x π 6 ) 1 2  for 0xπ.

Solution:
( a ) Left hand side, sin( 3x+ π 6 )sin( 3x π 6 ) =[ sin3xcos π 6 +cos3xsin π 6 ][ sin3xcos π 6 cos3xsin π 6 ] =2[ cos3xsin π 6 ] =2[ cos3x( 1 2 ) ] =cos3x( right hand side )

( b )( i ) sin( 3x 2 + π 6 )sin( 3x 2 π 6 )= 1 2 ,0x2π cos 3x 2 = 1 2 3x 2 = π 3 ,( 2π π 3 ),( 2π+ π 3 ) 3x 2 = π 3 , 5π 3 , 7π 3 x= 2π 9 , 10π 9 , 14π 9


( b )( ii )  y=sin( 3x+ π 6 )sin( 3x π 6 ) 1 2  for 0xπ. y=cos3x 1 2



Long Question 4


Question 4:
Find all the angles between 0° and 360° which satisfy the following equations:
(a) 2 sin ( 2x – 50o) = –1 
(b) 15 sin2x = sin x + 4 sin 30o
(c) 7 sin x cos x = 1  


Solution:

(a)
2 sin ( 2x – 50o) = –1 
sin ( 2x – 50o) = ½  
basic angle ( 2x – 50o) = –30o   ← (sin is negative at third and fourth quadrants)
 
2x – 50o = –30o, 180o + 30o, 360o – 30o, 360o + 180o+ 30o 
← (Take the angles in the range of  0o ≤ x ≤ 720o, which in 2 complete revolutions)  
 
2x – 50o = –30o, 210o, 330o, 570o 
2x = 20o, 260o, 380o, 620o 
x = 10o, 130o , 190o, 310o


(b)
15 sin2x = sin x + 4 sin 30o
15 sin2x = sin x + 4 (½)  ← (sin 30o = ½)
15 sin2x = sin x + 2
15 sin2x – sin x – 2 = 0
(5 sin x – 2)(3 sin x + 1) = 0
sin x 2 5   or sin x = –
When sin x = 2 5   
Basic angle x = 23º 35’
x = 23º 35’, 180º – 23º 35’
x = 23º 35’, 156º 25’
When sin x = –    ← (sin is negative at third and fourth quadrants)  
Basic angle x = 19º 28’
x = 180º + 19º 28’, 360º – 19º 28’
x = 199º 28’, 340º 32’
Hence x = 23º 35’, 156º 25’, 199º 28’, 340º 32’.


(c)
7 sin x cos x = 1  
sin x cos x 1 7
2 sin x cos x 2 7  ←  ( × 2 for both sides)
sin 2x = 2 7
sin 2x = 0.2857
Basic angle x = 16º 36’
2x = 16º 36’, 180º – 16º 36’, 360º + 16º 36’, 360º + 180º – 16º 36’
2x = 16º 36’, 163º 24’, 376º 36’, 523º 24’
x = 8º 18’, 81º 42’, 188º 18’, 261º 42’

Hence x = 8º 18’, 81º 42’, 188º 18’, 261º 42’.

Long Question 3


Question 3:
(a) Prove that 2tanx 2 sec 2 x =tan2x.   

(b)(i) Sketch the graph of y = – tan 2x for 0  x ≤ π
 .

(b)(ii) Hence, by drawing a suitable straight line on the same axes, find the number of solutions satisfying the equation 3 x π + 2 tan x 2 sec 2 x = 0  for 0  x π
 .
State the number of solutions.

Solution:
(a)
2 tan x 2 sec 2 x = tan 2 x L H S : 2 tan x 2 sec 2 x = 2 tan x 2 ( 1 + tan 2 x ) = 2 tan x 2 tan 2 x = tan 2 x (RHS)


(b)(i) 


(b)(ii)
3x π + 2tanx 2 sec 2 x =0 3x π +tan2x=0 from part (a) tan2x= 3x π  y= 3x π The suitable straight line to sketch is y= 3x π .

When x = 0, y = 0.
When x = π, = 3.
  Number of solutions = 3

Short Question 7 & 8


Question 7:
It is given that   sin A = 5 13 and cos B = 4 5 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tan A = 5 12


(b)
sin ( A + B ) = sin A cos B + cos A sin B sin ( A + B ) = ( 5 13 ) ( 4 5 ) + ( 12 13 ) ( 3 5 ) cos A = 12 13 sin B = 3 5 sin ( A + B ) = 4 13 36 65 sin ( A + B ) = 16 65


(c)
cos ( A B ) = cos A cos B + sin A sin B cos ( A B ) = ( 12 13 ) ( 4 5 ) + ( 5 13 ) ( 3 5 ) cos ( A B ) = 33 65



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem, Adjacent side = 1 2 p 2 = 1 p 2


(a)

tan A = p 1 p 2 tan is negative at second quadrant


(b)
cos A = 1 p 2 cos is negative at second quadrant


(c)
sin A = 2 sin A cos A sin A = 2 ( p ) ( 1 p 2 ) sin A = 2 p 1 p 2

Short Question 11 – 14


Question 11:
Prove the identity cos 2 x 1sinx =1+sinx

Solution:

LHS = cos 2 x 1sinx = 1 sin 2 x 1sinx sin 2 x+ cos 2 x=1 = ( 1+sinx )( 1sinx ) 1sinx =1+sinx =RHS Proven



Question 12:
Prove the identity sin 2 x cos 2 x= tan 2 x1 tan 2 x+1

Solution:

RHS = tan 2 x1 tan 2 x+1 = sin 2 x cos 2 x 1 sin 2 x cos 2 x +1 tanx= sinx cosx = sin 2 x cos 2 x cos 2 x sin 2 x+ cos 2 x cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x = sin 2 x cos 2 x sin 2 x+ cos 2 x=1 =LHS Proven


Question 13:
Prove the identity tan 2 θ sin 2 θ= tan 2 θ sin 2 θ

Solution:

LHS = tan 2 θ sin 2 θ = sin 2 θ cos 2 θ sin 2 θ = sin 2 θ sin 2 θ cos 2 θ cos 2 θ = sin 2 θ( 1 cos 2 θ ) cos 2 θ = sin 2 θ sin 2 θ cos 2 θ =( sin 2 θ cos 2 θ )( sin 2 θ ) = tan 2 θ sin 2 θ =RHS Proven



Question 14:
Prove the identity cosec 2 θ ( sec 2 θ tan 2 θ )1= cot 2 θ

Solution:

LHS = cosec 2 θ ( sec 2 θ tan 2 θ )1 = cosec 2 θ ( 1 )1 tan 2 θ+1= sec 2 θ sec 2 θ tan 2 θ=1 = cosec 2 θ1 = cot 2 θ 1+ cot 2 θ=cose c 2 θ cose c 2 θ1= cot 2 θ =RHS Proven


5.6b Solving Trigonometric Equation (Factorization)

5.6b Solving Trigonometric Equation (Factorization)
 
Example:
Find all the angles that satisfy each of the following equations for £ £ 360°.
(a)  cot x = 2 cos x
(b)  3 sec x = 4 cos x  
(c)  16 tan x = cot x

Solution:
(a)
cot x = 2 cos x cos x sin x = 2 cos x cos x = 2 cos x sin x cos x + 2 sin x cos x = 0 cos x ( 1 + 2 sin x ) = 0 cos x = 0 x = 90 , 270 1 + 2 sin x = 0 sin x = 1 2 Basic = 3 0 x = ( 180 + 30 ) , ( 360 30 ) x = 210 , 330 x = 90 , 210 , 270 , 330

(b)
3 sec x = 4 cos x 3 cos x = 4 cos x 3 = 4 cos 2 x cos 2 x = 3 4 cos x = ± 3 2 Basic = 30 x = 30 , ( 180 30 ) , ( 180 + 30 ) , ( 360 30 ) x = 30 , 150 , 210 , 330

(c)
16 tan x = cot x 16 tan x = 1 tan x tan 2 x = 1 16 tan x = ± 1 4 Basic = 14.04 x = 14.04 , ( 180 14.04 ) , ( 180 + 14.04 ) , ( 360 14.04 ) x = 14.04 , 165.96 , 194.04 , 345.96