4.3.1a Addition of Vectors (Examples)

Example 1:

Find
(a) The resultant vector of the addition of the two parallel vectors above
(b) The magnitude of the resultant vector.

Solution:
(a)
Resultant vector
= addition of the two vectors
= P Q + R S

(b)
Magnitude of the resultant vector
= | P Q | + | R S | = | 6 2 + 8 2 | + | 6 2 + 8 2 | = 10 + 10 = 20 units



Example 2:

The diagram above shows a parallelogram OABC. M is the midpoint of BC. Vector OA = a ˜  and  OC = c ˜ .  Find the following vectors in terms of a ˜  and  c ˜ .
( a ) O B ( b ) M B ( c ) O M
 
Solution:
(a)
O B = O A + A B Triangle Law of addition = O A + O C A B = O C = a ˜ + c ˜

(b)

MB = 1 2 CB M is the midpoint of CB  = 1 2 OA  = 1 2 a ˜

(c)
O M = O C + C M Triangle Law of addition = O C + M B C M = M B = c ˜ + 1 2 a ˜

Short Question 10 & 11


Question 10 (3 marks):
Diagram 3 shows vectors OP ,  OQ  and  OM drawn on a square grid.

Diagram

( a ) Express  OM  in the form h p ˜ +k q ˜ where h and k are constants. ( b ) On the diagram 3, mark and label  the point N such that  MN + OQ =2 OP .


Solution:
(a)
OM = p ˜ +2 q ˜

(b)

MN + OQ =2 OP MN =2 OP OQ        =2 p ˜ q ˜



Question 11 (4 marks):
A( 2, 3 ) and B( 2, 5 ) lie on a  Cartesian plane. It is given that 3 OA =2 OB + OC . Find ( a ) the coordinates of C, ( b ) | AC |

Solution:
Given A( 2,3 ) and B( 2,5 ) Thus,  OA =2 i ˜ +3 j ˜  and  OB =2 i ˜ +5 j ˜

(a)

3 OA =2 OB + OC OC =3 OA 2 OB  =3( 2 i ˜ +3 j ˜ )2( 2 i ˜ +5 j ˜ )  =6 i ˜ +9 j ˜ +4 i ˜ 10 j ˜  =10 i ˜ j ˜ Thus, coordinate of C is ( 10, 1 )


(b)
AC = AO + OC  = OA + OC  =( 2 i ˜ +3 j ˜ )+10 i ˜ j ˜  =2 i ˜ +10 i ˜ 3 j ˜ j ˜  =8 i ˜ 4 j ˜ | AC |= 8 2 + ( 4 ) 2    = 80  units    = 16×5  units    =4 5  units

Short Question 8 & 9


Question 8 (3 marks):
Diagram shows vectors AB ,  AC  and  AD drawn on a square grid with sides of 1 unit.

Diagram

( a ) Find | BA |. ( b ) Given  AB = b ˜  and  AC = c ˜ , express in terms of  b ˜  and  c ˜   ( i )  BC , ( ii )  AD


Solution:
(a)
| BA |= 3 2 + 4 2 =5 units

(b)(i)
BC = BA + AC      = b ˜ + c ˜      = c ˜ b ˜

(b)(ii)
AD = AB + BD      = b ˜ +2 BC      = b ˜ +2( c ˜ b ˜ )      =2 c ˜ b ˜



Question 9 (3 marks):
Diagram shows a trapezium ABCD.

Diagram

Given  p ˜ =( 3 4 ) and  q ˜ =( k1   2 ) where k is a constant, find value of k.


Solution:

p ˜ =m q ˜ ( 3 4 )=m( k1   2 ) ( 3 4 )=( mkm    2m ) mkm=3 .......... ( 1 ) 2m=4 ................ ( 2 ) From( 2 ): 2m=4 m=2 Substitute m=2 into ( 1 ): 2k2=3 2k=3+2 2k=5 k= 5 2

Long Question 10


Question 10 (10 marks):
Diagram shows a triangle ABC. The straight line AE intersects with the straight line BC at point D. Point V lies on the straight line AE.

It is given that  BD = 1 3 BC , AC =6 x ˜  and  AB =9 y ˜ . ( a ) Express in terms of  x ˜  and / or  y ˜ :    ( i )  BC ,    ( ii )  AD . ( b ) It is given that  AV =m AD  and  BV =n( x ˜ 9 y ˜ ), where m and n are constants.   Find the value of m and of n. ( c ) Given  AE =h x ˜ +9 y ˜ , where h is a constant, find the value of h.

Solution: 
(a)(i)
BC = BA + AC  =9 y ˜ +6 x ˜  =6 x ˜ 9 y ˜

(a)(ii)
AD = AB + BD  =9 y ˜ + 1 3 BC  =9 y ˜ + 1 3 ( 6 x ˜ 9 y ˜ )  =9 y ˜ +2 x ˜ 3 y ˜  =2 x ˜ +6 y ˜


(b)
Given  AV =m AD =m( 2 x ˜ +6 y ˜ ) =2m x ˜ +6m y ˜ AV = AB + BV    = 9 y ˜ +n( x ˜ 9 y ˜ )   =9 y ˜ +n x ˜ 9n y ˜   =n x ˜ +( 99n ) y ˜ By equating the coefficients of  x ˜  and  y ˜ 2m x ˜ +6m y ˜ =n x ˜ +( 99n ) y ˜ 2m=n n=2m.............( 1 ) 6m=99n.............( 2 ) Substitute (1) into (2), 6m=99( 2m ) 6m=918m 24m=9 m= 9 24 = 3 8 From ( 1 ): n=2( 3 8 )= 3 4


(c)
A, D and E are collinear. AD =k( AE ) AD =k( h x ˜ +9 y ˜ ) 2 x ˜ +6 y ˜ =kh x ˜ +9k y ˜ Equating the coefficients of  y ˜ : 9k=6 k= 6 9 k= 2 3 Equating the coefficients of  x ˜ : kh=2 ( 2 3 )h=2 h=2× 3 2 h=3



Long Question 9


Question 9 (10 marks):
Diagram 5 shows triangles OAQ and OPB where point P lies on OA and point Q lies on OB. The straight lines AQ and PB intersect at point R.
It is given that  OA =18 x ˜ ,  OB =16 y ˜ , OP:PA=1:2, OQ:QB=3:1, PR =m PB  and  QR =n QA , where m and n are constants. ( a ) Express  OR  in terms of    ( i ) m,  x ˜  and  y ˜ ,    ( ii ) n,  x ˜  and  y ˜ , ( b ) Hence, find the value of m and of n. ( c ) Given | x ˜ |=2 units, | y ˜ |=1 unit and OA is perpendicular to OB calculate | PR |.

Solution
(a)(i)
OR = OP + PR  = 1 3 OA +m PB  = 1 3 ( 18 x ˜ )+m( PO + OB )  =6 x ˜ +m( 6 x ˜ +16 y ˜ )

(a)(ii)
OR = OQ + QR  = 3 4 OB +n QA  = 3 4 ( 16 y ˜ )+n( QO + OA )  =12 y ˜ +n( 12 y ˜ +18 x ˜ )  =( 1212n ) y ˜ +18n x ˜


(b)
6 x ˜ +m( 6 x ˜ +16 y ˜ )=( 1212n ) y ˜ +18n x ˜ 6 x ˜ 6m x ˜ +16m y ˜ =18n x ˜ +12 y ˜ 12n y ˜ by comparison; 66m=18n 1m=3n m=13n..............( 1 ) 16m=1212n 4m=33n..............( 2 ) Substitute (1) into (2), 4( 13n )=33n 412n=33n 9n=1 n= 1 9 Substitute n= 1 9  into (1), m=13( 1 9 ) m= 2 3

[adinserter block="3"]

(c)
| x ˜ |=2| y ˜ |=1  PR = 2 3 PB  = 2 3 ( 6 x ˜ +16 y ˜ )  =4 x ˜ + 32 3 y ˜ | PR |= [ 4( 2 ) ] 2 + [ 32 3 ( 1 ) ] 2   = 1600 9   = 40 3  units


Long Question 8


Question 8:
Diagram below shows quadrilateral OPQR. The straight line PR intersects the straight line OQ at point S.


It is given that  OP =7 x ˜ ,  OR =5 y ˜ , PS:SR=3:1 and  OR  is parallel to  PQ . (a) Express in terms of  x ˜  and  y ˜ , (i)  PR (ii)  OS (b) Using  PQ =m OR  and  SQ =n OS , where m and n are constants,   Find the value of m and of n. (c) Given that | y ˜ |=4 units and the area of ORS  is 50 cm 2 , find the   perpendicular distance from point S to OR.


Solution:
(a)(i)
PR = PO + OR   =7 x ˜ +5 y ˜


(a)(ii)
OS = OP + PS   =7 x ˜ + 3 4 PR   =7 x ˜ + 3 4 ( 7 x ˜ +5 y ˜ )   =7 x ˜ 21 4 x ˜ + 15 4 y ˜   = 7 4 x ˜ + 15 4 y ˜


(b)
PS = PQ SQ 3 4 PR =m OR n OS 3 4 ( 7 x ˜ +5 y ˜ )=m( 5 y ˜ )n( 7 4 x ˜ + 15 4 y ˜ ) 21 4 x ˜ + 15 4 y ˜ =5m y ˜ 7 4 n x ˜ 15 4 m y ˜ 21 4 x ˜ + 15 4 y ˜ = 7 4 n x ˜ + 5 4 m y ˜ 21 x ˜ +15 y ˜ =7n x ˜ +5m y ˜ 7n=21 n=3 5m=15 m=3


(c)
Area of ΔORS=50 1 2 ×( 5 y ˜ )×t=50 1 2 ×5( 4 )×t=50 10t=50 t=5  Perpendicular distance from point S to OR=5 units.

Long Question 7


Question 7:
Diagram below shows quadrilateral OPBC. The straight line AC intersects the straight line PQ at point B.


It is given that  OP = a ˜ ,  OQ = b ˜ ,  OA =4 AP ,  OC =3 OQ ,  PB =h PQ  and AB =k AC . (a) Express  OB  in terms of h a ˜  and  b ˜ . (b) Express  OB  in terms of k a ˜  and  b ˜ . (c)(i) Find the value of h and of k. (ii) Hence, state  OB  in terms of  a ˜  and  b ˜ .


Solution:
(a)
OB = OP + PB  = a ˜ +h PQ  = a ˜ +h( PO + OQ )  = a ˜ +h( a ˜ + b ˜ )  = a ˜ h a ˜ +h b ˜ OB =( 1h ) a ˜ +h b ˜


(b)
OB = OP + PB  = a ˜ + PA + AB  = a ˜ +( 1 5 OP )+k AC  = a ˜ +( 1 5 a ˜ )+k( AO + OC )  = 4 5 a ˜ +k( 4 5 OP +3 OQ )  = 4 5 a ˜ +k( 4 5 a ˜ +3 b ˜ )  = 4 5 a ˜ 4 5 k a ˜ +3k b ˜ OB = 4 5 ( 1k ) a ˜ +3k b ˜


(c)(i)
( 1h ) a ˜ +h b ˜ = 4 5 ( 1k ) a ˜ +3k b ˜ 1h= 4 5 4 5 k..........( 1 ) h=3k..........( 2 ) Substitute ( 2 ) into the ( 1 )  13k= 4 5 4 5 k 515k=44k 11k=1 k= 1 11 Substitute k= 1 11  into ( 2 ) h=3( 1 11 )   = 3 11


(c)(ii)
OB =( 1h ) a ˜ +h b ˜ when h= 3 11 =( 1 3 11 ) a ˜ +( 3 11 ) b ˜ = 8 11 a ˜ + 3 11 b ˜

Long Question 6


Question 6:
Diagram below shows a trapezium OABC and point D lies on AC.


It is given that  OC =18 b ˜ ,  OA =6 a ˜  and  OC =2 AB . (a) Express in terms of  a ˜  and  b ˜ , (i)  AC (ii)  OB (b) It is given that  AD =k AC , where k is a constant. Find the value of k if the points OD and B are collinear.


Solution
:

(a)(i)
AC = AO + OC       =6 a ˜ +18 b ˜       =18 b ˜ 6 a ˜


(a)(ii)
OC =2 AB 18 b ˜ =2( AO + OB ) 18 b ˜ =2( 6 a ˜ + OB ) 18 b ˜ =12 a ˜ +2 OB OB =6 a ˜ +9 b ˜


(b)
OD =h OB =h( 6 a ˜ +9 b ˜ ) =6h a ˜ +9h b ˜ AD = OD OA =6h a ˜ +9h b ˜ 6 a ˜ = a ˜ ( 6h6 )+9h b ˜ AD =k AC a ˜ ( 6h6 )+9h b ˜ =k( 18 b ˜ 6 a ˜ ) a ˜ ( 6h6 )+9h b ˜ =6k a ˜ +18k b ˜ 6h6=6k h1=k h=1k..........( 1 ) 9h=18k h=2k From ( 1 ), 1k=2k 3k=1 k= 1 3

Short Question 6 & 7


Question 6:
The points P, Q and R are collinear. It is given that   P Q = 4 a ˜ 2 b ˜  and   Q R = 3 a ˜ + ( 1 + k ) b ˜ , where k is a constant. Find
(a)    the value of k,
(b)    the ratio of PQ : QR.

Solution:
(a)
Note: If P, Q and R are collinear, PQ =m QR 4 a ˜ 2 b ˜ =m[ 3 a ˜ +( 1+k ) b ˜ ] 4 a ˜ 2 b ˜ =3m a ˜ +m( 1+k ) b ˜ Comparing vector: a ˜ : 4=3m         m= 4 3 b ˜ : 2=m( 1+k ) 2= 4 3 ( 1+k ) 1+k= 6 4 k= 3 2 1 k= 5 2

(b)
P Q = m Q R P Q = 4 3 Q R P Q Q R = 4 3 P Q : Q R = 4 : 3



Question 7:
Given that x ˜ = 3 i ˜ + m j ˜ and   y ˜ = 4 i ˜ 3 j ˜ , find the values of m if the vector   x ˜    is parallel to the vector y ˜ .

Solution:
If vector  x ˜  is parallel to vector  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Comparing vector: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4

4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors


4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors
1. When a vector a ˜ is multiplied by a scalar k, the product is k a ˜ . Its magnitude is k times the magnitude of the vector a ˜ .

2. The vector a ˜ is parallel to the vector b ˜ if and only if b ˜ = k a ˜ , where k is a constant.

3. If the vectors a ˜ and b ˜ are not parallel and h a ˜ = k b ˜ , then h = 0 and k = 0.
 


Example 1:
If vectors a ˜ and b ˜  are not parallel and ( k 7 ) a ˜ = ( 5 + h ) b ˜ , find the value of k and of h.

Solution:
The vectors a ˜ and b ˜ are not parallel, so
k – 7 = 0 → = 7
5 + h = 0 → h = –5