4.3.1a Addition of Vectors (Examples)

Example 1:

Find
(a) The resultant vector of the addition of the two parallel vectors above
(b) The magnitude of the resultant vector.

Solution:
(a)
Resultant vector
= addition of the two vectors
=PQ+RS

(b)
Magnitude of the resultant vector
=|PQ|+|RS|=|62+82|+|62+82|=10+10=20units



Example 2:

The diagram above shows a parallelogram OABC. M is the midpoint of BC. Vector OA=a˜ and OC=c˜.  Find the following vectors in terms of a˜ and c˜.
(a)OB(b)MB(c)OM
 
Solution:
(a)
OB=OA+ABTriangle Law of addition=OA+OCAB=OC=a˜+c˜

(b)

MB=12CBM is the midpoint of CB =12OA =12a˜

(c)
OM=OC+CMTriangle Law of addition=OC+MBCM=MB=c˜+12a˜

Short Question 10 & 11


Question 10 (3 marks):
Diagram 3 shows vectors OP, OQ and OM drawn on a square grid.

Diagram

(a) Express OM in the form hp˜+kq˜where h and k are constants.(b) On the diagram 3, mark and label the point N such that MN+OQ=2OP.


Solution:
(a)
OM=p˜+2q˜

(b)

MN+OQ=2OPMN=2OPOQ       =2p˜q˜



Question 11 (4 marks):
A(2, 3) and B(2, 5) lie on a Cartesian plane.It is given that 3OA=2OB+OC.Find(a) the coordinates of C,(b) |AC|

Solution:
Given A(2,3) and B(2,5)Thus, OA=2i˜+3j˜ and OB=2i˜+5j˜

(a)

3OA=2OB+OCOC=3OA2OB =3(2i˜+3j˜)2(2i˜+5j˜) =6i˜+9j˜+4i˜10j˜ =10i˜j˜Thus, coordinate of C is (10, 1)


(b)
AC=AO+OC =OA+OC =(2i˜+3j˜)+10i˜j˜ =2i˜+10i˜3j˜j˜ =8i˜4j˜|AC|=82+(4)2   =80 units   =16×5 units   =45 units

Short Question 8 & 9


Question 8 (3 marks):
Diagram shows vectors AB, AC and AD drawn on a square grid with sides of 1 unit.

Diagram

(a) Find |BA|.(b) Given AB=b˜ and AC=c˜,express in terms of b˜ and c˜ (i) BC,(ii) AD


Solution:
(a)
|BA|=32+42=5 units

(b)(i)
BC=BA+AC     =b˜+c˜     =c˜b˜

(b)(ii)
AD=AB+BD     =b˜+2BC     =b˜+2(c˜b˜)     =2c˜b˜



Question 9 (3 marks):
Diagram shows a trapezium ABCD.

Diagram

Given p˜=(34) and q˜=(k1  2)where k is a constant, find value of k.


Solution:

p˜=mq˜(34)=m(k1  2)(34)=(mkm   2m)mkm=3 .......... (1)2m=4 ................ (2)From(2):2m=4m=2Substitute m=2 into (1):2k2=32k=3+22k=5k=52

Long Question 10


Question 10 (10 marks):
Diagram shows a triangle ABC. The straight line AE intersects with the straight line BC at point D. Point V lies on the straight line AE.

It is given that BD=13BC,AC=6x˜ and AB=9y˜.(a) Express in terms of x˜ and / or y˜:   (i) BC,   (ii) AD.(b) It is given that AV=mAD and BV=n(x˜9y˜), where m and n are constants.  Find the value of m and of n.(c) Given AE=hx˜+9y˜, where h is a constant, find the value of h.

Solution: 
(a)(i)
BC=BA+AC =9y˜+6x˜ =6x˜9y˜

(a)(ii)
AD=AB+BD =9y˜+13BC =9y˜+13(6x˜9y˜) =9y˜+2x˜3y˜ =2x˜+6y˜


(b)
Given AV=mAD=m(2x˜+6y˜)=2mx˜+6my˜AV=AB+BV   = 9y˜+n(x˜9y˜)  =9y˜+nx˜9ny˜  =nx˜+(99n)y˜By equating the coefficients of x˜ and y˜2mx˜+6my˜=nx˜+(99n)y˜2m=nn=2m.............(1)6m=99n.............(2)Substitute (1) into (2),6m=99(2m)6m=918m24m=9m=924=38From (1):n=2(38)=34


(c)
A, D and E are collinear.AD=k(AE)AD=k(hx˜+9y˜)2x˜+6y˜=khx˜+9ky˜Equating the coefficients of y˜:9k=6k=69k=23Equating the coefficients of x˜:kh=2(23)h=2h=2×32h=3



Long Question 9


Question 9 (10 marks):
Diagram 5 shows triangles OAQ and OPB where point P lies on OA and point Q lies on OB. The straight lines AQ and PB intersect at point R.
It is given that OA=18x˜, OB=16y˜, OP:PA=1:2, OQ:QB=3:1,PR=mPB and QR=nQA, where m and n are constants.(a) Express OR in terms of   (i) m, x˜ and y˜,   (ii) n, x˜ and y˜,(b) Hence, find the value of m and of n.(c) Given |x˜|=2 units, |y˜|=1 unit and OA is perpendicular to OB calculate |PR|.

Solution
(a)(i)
OR=OP+PR =13OA+mPB =13(18x˜)+m(PO+OB) =6x˜+m(6x˜+16y˜)

(a)(ii)
OR=OQ+QR =34OB+nQA =34(16y˜)+n(QO+OA) =12y˜+n(12y˜+18x˜) =(1212n)y˜+18nx˜


(b)
6x˜+m(6x˜+16y˜)=(1212n)y˜+18nx˜6x˜6mx˜+16my˜=18nx˜+12y˜12ny˜by comparison;66m=18n1m=3nm=13n..............(1)16m=1212n4m=33n..............(2)Substitute (1) into (2),4(13n)=33n412n=33n9n=1n=19Substitute n=19 into (1),m=13(19)m=23

[adinserter block="3"]

(c)
|x˜|=2|y˜|=1 PR=23PB =23(6x˜+16y˜) =4x˜+323y˜|PR|=[4(2)]2+[323(1)]2  =16009  =403 units


Long Question 8


Question 8:
Diagram below shows quadrilateral OPQR. The straight line PR intersects the straight line OQ at point S.


It is given that OP=7x˜, OR=5y˜, PS:SR=3:1 and OR is parallel to PQ.(a) Express in terms of x˜ and y˜,(i) PR(ii) OS(b) Using PQ=mOR and SQ=nOS, where m and n are constants,  Find the value of m and of n.(c) Given that |y˜|=4 units and the area of ORS is 50 cm2, find the  perpendicular distance from point S to OR.


Solution:
(a)(i)
PR=PO+OR  =7x˜+5y˜


(a)(ii)
OS=OP+PS  =7x˜+34PR  =7x˜+34(7x˜+5y˜)  =7x˜214x˜+154y˜  =74x˜+154y˜


(b)
PS=PQSQ34PR=mORnOS34(7x˜+5y˜)=m(5y˜)n(74x˜+154y˜)214x˜+154y˜=5my˜74nx˜154my˜214x˜+154y˜=74nx˜+54my˜21x˜+15y˜=7nx˜+5my˜7n=21n=35m=15m=3


(c)
Area of ΔORS=5012×(5y˜)×t=5012×5(4)×t=5010t=50t=5

Long Question 7


Question 7:
Diagram below shows quadrilateral OPBC. The straight line AC intersects the straight line PQ at point B.


It is given that  OP = a ˜ ,  OQ = b ˜ ,  OA =4 AP ,  OC =3 OQ ,  PB =h PQ  and AB =k AC . (a) Express  OB  in terms of h a ˜  and  b ˜ . (b) Express  OB  in terms of k a ˜  and  b ˜ . (c)(i) Find the value of h and of k. (ii) Hence, state  OB  in terms of  a ˜  and  b ˜ .


Solution:
(a)
OB = OP + PB  = a ˜ +h PQ  = a ˜ +h( PO + OQ )  = a ˜ +h( a ˜ + b ˜ )  = a ˜ h a ˜ +h b ˜ OB =( 1h ) a ˜ +h b ˜


(b)
OB = OP + PB  = a ˜ + PA + AB  = a ˜ +( 1 5 OP )+k AC  = a ˜ +( 1 5 a ˜ )+k( AO + OC )  = 4 5 a ˜ +k( 4 5 OP +3 OQ )  = 4 5 a ˜ +k( 4 5 a ˜ +3 b ˜ )  = 4 5 a ˜ 4 5 k a ˜ +3k b ˜ OB = 4 5 ( 1k ) a ˜ +3k b ˜


(c)(i)
( 1h ) a ˜ +h b ˜ = 4 5 ( 1k ) a ˜ +3k b ˜ 1h= 4 5 4 5 k..........( 1 ) h=3k..........( 2 ) Substitute ( 2 ) into the ( 1 )  13k= 4 5 4 5 k 515k=44k 11k=1 k= 1 11 Substitute k= 1 11  into ( 2 ) h=3( 1 11 )   = 3 11


(c)(ii)
OB =( 1h ) a ˜ +h b ˜ when h= 3 11 =( 1 3 11 ) a ˜ +( 3 11 ) b ˜ = 8 11 a ˜ + 3 11 b ˜

Long Question 6


Question 6:
Diagram below shows a trapezium OABC and point D lies on AC.


It is given that  OC =18 b ˜ ,  OA =6 a ˜  and  OC =2 AB . (a) Express in terms of  a ˜  and  b ˜ , (i)  AC (ii)  OB (b) It is given that  AD =k AC , where k is a constant. Find the value of k if the points OD and B are collinear.


Solution
:

(a)(i)
AC = AO + OC       =6 a ˜ +18 b ˜       =18 b ˜ 6 a ˜


(a)(ii)
OC =2 AB 18 b ˜ =2( AO + OB ) 18 b ˜ =2( 6 a ˜ + OB ) 18 b ˜ =12 a ˜ +2 OB OB =6 a ˜ +9 b ˜


(b)
OD =h OB =h( 6 a ˜ +9 b ˜ ) =6h a ˜ +9h b ˜ AD = OD OA =6h a ˜ +9h b ˜ 6 a ˜ = a ˜ ( 6h6 )+9h b ˜ AD =k AC a ˜ ( 6h6 )+9h b ˜ =k( 18 b ˜ 6 a ˜ ) a ˜ ( 6h6 )+9h b ˜ =6k a ˜ +18k b ˜ 6h6=6k h1=k h=1k..........( 1 ) 9h=18k h=2k From ( 1 ), 1k=2k 3k=1 k= 1 3

Short Question 6 & 7


Question 6:
The points P, Q and R are collinear. It is given that   P Q = 4 a ˜ 2 b ˜  and   Q R = 3 a ˜ + ( 1 + k ) b ˜ , where k is a constant. Find
(a)    the value of k,
(b)    the ratio of PQ : QR.

Solution:
(a)
Note: If P, Q and R are collinear, PQ =m QR 4 a ˜ 2 b ˜ =m[ 3 a ˜ +( 1+k ) b ˜ ] 4 a ˜ 2 b ˜ =3m a ˜ +m( 1+k ) b ˜ Comparing vector: a ˜ : 4=3m         m= 4 3 b ˜ : 2=m( 1+k ) 2= 4 3 ( 1+k ) 1+k= 6 4 k= 3 2 1 k= 5 2

(b)
P Q = m Q R P Q = 4 3 Q R P Q Q R = 4 3 P Q : Q R = 4 : 3



Question 7:
Given that x ˜ = 3 i ˜ + m j ˜ and   y ˜ = 4 i ˜ 3 j ˜ , find the values of m if the vector   x ˜    is parallel to the vector y ˜ .

Solution:
If vector  x ˜  is parallel to vector  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Comparing vector: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4

4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors


4.2 Multiplication of Vector by a Scalar and the Parallel Condition of Two Vectors
1. When a vector a ˜ is multiplied by a scalar k, the product is k a ˜ . Its magnitude is k times the magnitude of the vector a ˜ .

2. The vector a ˜ is parallel to the vector b ˜ if and only if b ˜ = k a ˜ , where k is a constant.

3. If the vectors a ˜ and b ˜ are not parallel and h a ˜ = k b ˜ , then h = 0 and k = 0.
 


Example 1:
If vectors a ˜ and b ˜  are not parallel and ( k 7 ) a ˜ = ( 5 + h ) b ˜ , find the value of k and of h.

Solution:
The vectors a ˜ and b ˜ are not parallel, so
k – 7 = 0 → = 7
5 + h = 0 → h = –5