Short Question 9 & 10


Question 9 (2 marks):
( a ) Given  C 6 n >1, list out all the  possible values of n. ( b ) Given  C y m = C y n , express y in terms of m and n.

Solution:
(a)
n = 1, 2, 3, 4, 5

(b)
y = m + n



Question 10 (4 marks):
Danya has a home decorations shop. One day, Danya received 14 sets of cups from a supplier. Each set contained 6 pieces of cups of different colours.

(a)
Danya chooses 3 sets of cups at random to be checked.
Find the number of different ways that Danya uses to choose those sets of cups.

(b)
Danya takes a set of cups to display by arranging it in a row.
Find the number of different ways the cups can be arranged such that the blue cup is not displaced next to the red cup.

Solution:
(a)
Number of different ways 3 sets of cups at random to be checked
= 14C3
 =364


(b)


Number of ways (Blue cup and red cup are next to each other)
= 5! × 2!
= 240

Number of different ways the cups can be arranged such that the blue cup is not displaced next to the red cup
= 6! – 240
= 720 – 240
= 480


Short Question 19


Question 19 (4 marks):
It is given that cos α = t where t is a constant and 0o ≤ α ≤ 90o.
Express in terms of t
(a) sin (180o + α),
(b) sec 2α.

Solution:
(a)




sin( 180 o +α ) =sin180cosα+cos180sinα =0sinα =sinα = 1 t 2

(b)
sec2α= 1 cos2α  = 1 2 cos 2 α1  = 1 2 t 2 1


Short Questions (Question 5 & 6)


Question 5 (4 marks):
Diagram shows a circle with centre O.

Diagram

PR
and QR are tangents to the circle at points P and Q respectively. It is given that the length of minor arc PQ is 4 cm and OR= 5 α  cm.  
Express in terms of α,
(a) the radius, r, of the circle,
(b) the area, A, of the shaded region.

Solution:
(a)
Given  s PQ =4    rα=4   r= 4 α  cm

(b)

PR= ( 5 α ) 2 ( 4 α ) 2 PR= 9 α 2 PR= 3 α A= Area of shaded region A= Area of quadrilateral OPRQ Area of sector OPQ =2( Area of  OPR ) 1 2 r 2 θ =2[ 1 2 × 3 α × 4 α ][ 1 2 × ( 4 α ) 2 ×α ] = 12 α 2 8 α = 128α α 2  cm 2


Question 6 (3 marks):
Diagram shows two sectors AOD and BOC of two concentric circles with centre O.

Diagram

The angle subtended at the centre O by the major arc AD is 7α radians and the perimeter of the whole diagram is 50 cm.
Given OB = r cm, OA = 2OB and ∠BOC = 2α, express r in terms of α.

Solution:

Length of major arc AOD =2r×7α =14rα Length of minor arc BOC =r×2α =2rα Perimeter of the whole diagram =50 cm 14rα+2rα+r+r=50 16rα+2r=50 8rα+r=25 r( 8α+1 )=25 r= 25 8α+1

SPM Practice Question 15 & 16


Question 15 (2 marks):
It is given that the nth term of a geometric progression is T n = 3 r n1 2 , rk.  
State
(a) the value of k,
(b) the first term of progression.

Solution:
(a)
k = 0, k = 1 or k = -1 (Any one of these answer).

(b)
T n = 3 2 r n1 T 1 = 3 2 r 11   = 3 2 r 0   = 3 2 ( 1 )   = 3 2



Question 16 (4 marks):
It is given that p, 2 and q are the first three terms of a geometric progression.
Express in terms of q
(a) the first term and the common ratio of the progression.
(b) the sum to infinity of the progression.

Solution:
(a)
T 1 =p,  T 2 =2,  T 3 =q T 2 T 1 = T 3 T 2 2 p = q 2 p= 4 q First term,  T 1 =p= 4 q Common ratio= q 2

(b)
a= 4 q , r= q 2 S = a 1r = 4 q 1 q 2 = 4 q ÷[ 1 q 2 ] = 4 q ÷[ 2q 2 ] = 4 q × 2 2q = 8 2q q 2

Quadratic Functions, SPM Practice (Short Questions)


Question 10 (3 marks):
Diagram shows the graph y = a (xp)2 + q, where a, p and q are constants. The straight line y = –8 is the tangent to the curve at point H.

Diagram

(a) State the coordinates of H.
(b) Find the value of a.

Solution:
(a)
Coordinate x of H = 1+7 2 = 6 2 =3 Thus, coordinates of H=( 3,8 ).

(b)
y=a ( xp ) 2 +q y=a ( x3 ) 2 +( 8 ) y=a ( x3 ) 2 8 ......... ( 1 ) Substitute ( 7,0 ) into ( 1 ): 0=a ( 73 ) 2 8 0=16a8 16a=8 a= 1 2



Question 11 (3 marks):
Faizal has a rectangular plywood with a dimension 3x metre in length and 2x metre in width. He cuts part of the plywood into a square shape with sides of x metre to make a table surface.
Find the range of values of x if the remaining area of the plywood is at least (x2 + 4) metre2.

Solution:



Area of plywood – area of square ≥ (x2 + 4)
3x(2x) – x2x2 + 4
6x2x2x2 ≥ 4
4x2 ≥ 4
x2 – 1 ≥ 0
(x + 1)(x – 1) ≥ 0
x ≤ –1 or x ≥ 1
Thus, x ≥ 1 (length is > 0)




1.6.4 Function, SPM Practice (Short Question)


Question 10 (4 marks):
Given the function g : x → 2x – 8, find
( a )  g 1 ( x ), ( b ) the value of p such that  g 2 ( 3p 2 )=30.

Solution:
(a)
Let y=g( x ) =2x8 2x8=y  2x=y+8    x= y+8 2 Thus,  g 1 ( x )= x+8 2

(b)
g( x )=2x8 g 2 ( x )=g[ g( x ) ]  =g( 2x8 )  =2( 2x8 )8  =4x168  =4x24 g 2 ( 3p 2 )=30 4( 3p 2 )24=30 6p=54 p=9



Question 11 (4 marks):
Diagram 9 shows the relation between set A, set B and set C.

Diagram 9

It is given that set A maps to set B by the function x+1 2 and maps to set C by fg : xx2 + 2x + 4.
(a) Write the function which maps set A to set B by using the function notation.
(b) Find the function which maps set B to set C.


Solution:

(a)
g:x x+1 2

(b)

g( x )= x+1 2 fg( x )= x 2 +2x+4 f[ g( x ) ]= x 2 +2x+4 f( x+1 2 )= x 2 +2x+4 Let  x+1 2 =y x+1=2y x=2y1 f( y )= ( 2y1 ) 2 +2( 2y1 )+4 f( y )=4 y 2 4y+1+4y2+4 f( y )=4 y 2 +3 f( x )=4 x 2 +3 Thus, function which maps set B to set C is f( x )=4 x 2 +3

Short Questions (Question 15 – 17)


Question 15 (4 marks):
( a ) Given P= log a Q, state the  conditions of a. ( b ) Given  log 3 y= 2 log xy 3 , express  y in terms of x.

Solution:
(a)
a > 0, a ≠ 1

(b)
log 3 y= 2 log xy 3 log xy y log xy 3 = 2 log xy 3 log xy y=2 y= ( xy ) 2 y= x 2 y 2 1 x 2 = y 2 y y= 1 x 2


Question 16 (3 marks):
Given  25 h+3 125 p1 =1, express p in terms of h.

Solution:
25 h+3 125 p1 =1 25 h+3 = 125 p1 ( 5 2 ) h+3 = ( 5 3 ) p1 5 2h+6 = 5 3p3 2h+6=3p3 3p=2h+9 p= 2h+9 3


Question 17 (3 marks):
Solve the equation: log m 324 log m 2m=2

Solution:
log m 324 log m 2m=2 log m 324 log m 2m log m m 1 2 =2 log m 3242( log m 2m log m m )=2 log m 3242 log m 2m=2 log m 324 log m ( 2m ) 2 =lo g m m 2 log m ( 324 4 m 2 )=lo g m m 2 324 4 m 2 = m 2 4 m 4 =324 m 4 =81 m=±3( 3 is rejected )

Short Question 14 & 15


Question 14 (3 marks):
It is given that 5 ( 2x+3 ) n dx= p ( 2x+3 ) 5 +c , where c, n and p are constants.
Find the value of n and of p.

Solution:
5 ( 2x+3 ) n dx= 5 ( 2x+3 ) n dx = 5 ( 2x+3 ) n+1 ( n+1 )×2 +c = 5 2( 1n ) × 1 ( 2x+3 ) n1 +c = 5 2( 1n ) ( 2x+3 ) n1 +c Compare  5 2( 1n ) ( 2x+3 ) n1 with  p ( 2x+3 ) 5 n1=5 n=6 5 2( 1n ) =p 5 2( 16 ) =p 5 2( 5 ) =p p= 1 2



Question 15 (4 marks):
Diagram shows the curve y = g(x). The straight line is a tangent to the curve.
Diagram

Given g’(x) = –4x + 8, find the equation of the curve.


Solution:
Given g'( x )=4x+8 Maximum point when g'( x )=0 4x+8=0 4x=8 x=2 Thus, maximum point is ( 2,11 ). g'( x )=4x+8 g'( x ) = ( 4x+8 ) dx g( x )= 4 x 2 2 +8x+c g( x )=2 x 2 +8x+c Substitute ( 2,11 ) into g( x ): 11=2 ( 2 ) 2 +8( 2 )+c c=3 Thus, the equation of curve is g( x )=2 x 2 +8x+3

Short Questions (Question 26 & 27)


Question 26 (3 marks):
Find the value of
( a )  lim x1 ( 7 x 2 ), ( b ) f''( 2 ) if f'( x )=2 x 3 4x+3.

Solution:
(a)
lim x1 ( 7 x 2 ) =7 ( 1 ) 2 =6

(b)
 f'( x )=2 x 3 4x+3 f''( x )=6 x 2 4 f''( 2 )=6 ( 2 ) 2 4   =244   =20



Question 27 (4 marks):
It is given that L = 4t t2 and x = 3 + 6t.
(a) Express dL dx in terms of t.
(b) Find the small change in x, when L changes from 3 to 3.4 at the instant t = 1.

Solution:
(a)
Given L=4t t 2  and x=3+6t L=4t t 2 dL dt =42t x=3+6t dx dt =6 dL dx = dL dt × dt dx dL dx =( 42t )× 1 6 = 42t 6 = 2t 3


(b)
δL=3.43=0.4 δL δx dL dx δx=δL÷ δL δx δx=δL× δx δL =0.4× 3 2t = 2 5 × 3 2t = 6 5( 2t ) When t=1,  δx= 6 5( 21 ) = 6 5

Short Questions (Question 8 & 9)


Question 8 (3 marks):
The following information refers to the equation of two straight lines, AB and CD.

   AB:y2kx3=0   CD: x 3h + y 4 =1 where h and k are constants.

Given the straight lines AB and CD are perpendicular to each other, express h in terms of k.

Solution:
AB:y2kx3=0 y=2kx+3 m AB =2k CD: x 3h + y 4 =1 m CD = 4 3h m AB × m CD =1 2k×( 4 3h )=1 8k=3h h= 8 3 k



Question 9 (3 marks):
A straight line passes through P(3, 1) and Q(12, 7). The point R divides the line segment PQ such that 2PQ = 3RQ.
Find the coordinates of R.

Solution:



2PQ=3RQ PQ RQ = 3 2 Point R =( 1( 12 )+2( 3 ) 1+2 , 1( 7 )+2( 1 ) 1+2 ) =( 18 3 , 9 3 ) =( 6,3 )