Short Question 5 – 7


Question 5:
Given  ( 6 x 2 +1 )dx=m x 3 +x +c,  where m and c are constants, find (a) the value of m. (b) the value of c if  ( 6 x 2 +1 )dx=13 when x=1.

Solution:
(a)
( 6 x 2 +1 )dx=m x 3 +x +c 6 x 3 3 +x+c=m x 3 +x+c 2 x 3 +x+c=m x 3 +x+c Compare the both sides,  m=2

(b)

( 6 x 2 +1 )dx=13 when x=1. 2 ( 1 ) 3 +1+c=13            3+c=13                 c=10



Question 6:
It is given that  5 k g(x)dx=6 , and  5 k [ g( x )+2 ]dx =14, find the value of k.

Solution:
5 k [ g( x )+2 ]dx =14 5 k g( x )dx + 5 k 2dx =14                6+ [ 2x ] 5 k =14                 2( k5 )=8                      k5=4                           k=9



Question 7:
Given  k 2 (4x+7)dx=28 , calculate the possible value of k.

Solution:
k 2 (4x+7)dx=28 [ 2 x 2 +7x ] k 2 =28 8+14( 2 k 2 +7k )=28 222 k 2 7k=28 2 k 2 +7k+6=0 ( 2k+3 )( k+2 )=0 k= 3 2  or k=2

Short Question 8 – 10


Question 8:
Given y= 5x x 2 +1  and  dy dx =g( x ), find the value of  0 3 2g( x )dx.

Solution:
Since dy dx =g( x ), thus y= g( x ) dx 0 3 2g( x )dx=2 0 3 g( x )dx   =2 [ y ] 0 3   =2 [ 5x x 2 +1 ] 0 3   =2[ 5( 3 ) 3 2 +1 0 ]   =2( 15 10 )   =3



Question 9:
Find  5 k ( x+1 )dx, in terms of k.

Solution:
5 k ( x+1 )dx=[ x 2 2 +x ] 5 k   =( k 2 2 +k )( 5 2 2 +5 )   = k 2 +2k 2 35 2   = k 2 +2k35 2



Question 10:
Given that= 2 5 g(x)dx=2 . Find (a) the value of  5 2 g(x)dx, (b) the value of m if  2 5 [ g(x)+m( x ) ]dx=19

Solution:
(a)  5 2 g(x)dx= 2 5 g(x)dx                      =( 2 )                      =2

(b)  2 5 [ g(x)+m( x ) ]dx=19       2 5 g(x)dx+m 2 5 xdx=19               2+m [ x 2 2 ] 2 5 =19                        m 2 [ x 2 ] 2 5 =21                     m 2 [ 254 ]=21                             21m=42                                 m=2

Short Question 11 – 13


Question 11:
Given  2 3 g(x)dx=4 , and  2 3 h(x)dx=9 , find the value of (a)  2 3 5g(x)dx, (b) m if  2 3 [ g(x)+3h( x )+4m ]dx=12

Solution:
(a)
2 3 5g(x)dx=5 2 3 g(x)dx                  =5×4                  =20

(b)
2 3 [ g(x)+3h( x )+4m ]dx=12 2 3 g(x)dx+3 2 3 h( x )dx+ 2 3 4mdx=12 4+3( 9 )+4m [ x ] 2 3 =12        4m[ 3( 2 ) ]=19                       20m=19                           m= 19 20



Question 12:
(a) Find the value of  1 1 ( 3x+1 ) 3 dx. (b) Evaluate  3 4 1 2x4  dx.

Solution:
a)  1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] 1 1                            = [ ( 3x+1 ) 4 12 ] 1 1                            = 1 12 [ 4 4 ( 2 ) 4 ]                            = 1 12 ( 25616 )                            =20

(b)  3 4 1 2x4  dx= 3 4 1 ( 2x4 ) 1 2  dx                             = 3 4 ( 2x4 ) 1 2  dx                             = [ ( 2x4 ) 1 2 +1 1 2 ( 2 ) ] 3 4                             = [ 2x4 ] 3 4                             =[ 2( 4 )4 2( 3 )4 ]                             =2 2



Question 13:
Given that y= x 2 2x1 , show that dy dx = 2x( x1 ) ( 2x1 ) 2 . Hence, evaluate  2 2 x( x1 ) 4 ( 2x1 ) 2  dx .

Solution:
y= x 2 2x1 dy dx = ( 2x1 )( 2x )x( 2 ) ( 2x1 ) 2     = 4 x 2 2x2 x 2 ( 2x1 ) 2     = 2 x 2 2x ( 2x1 ) 2     = 2x( x1 ) ( 2x1 ) 2  ( shown ) 2 2 2x( x1 ) ( 2x1 ) 2  dx = [ x 2 2x1 ] 2 2 1 8 2 2 2x( x1 ) ( 2x1 ) 2  dx = 1 8 [ x 2 2x1 ] 2 2 1 4 2 2 x( x1 ) ( 2x1 ) 2  dx = 1 8 [ ( 2 2 2( 2 )1 )( ( 2 ) 2 2( 2 )1 ) ]                            = 1 8 [ ( 4 3 )( 4 5 ) ]                            = 1 8 ( 32 15 )                            = 4 15

Long Question 3


Question 3:
The gradient function of a curve which passes through P(2, 14) is 6x² – 12x
Find
(a) the equation of the curve,
(b) the coordinates of the turning points of the curve and determine whether each of the turning points is a maximum or a minimum.

Solution:
(a)
Given gradient function of a curve  dy dx =6 x 2 12x The equation of the curve, y= ( 6 x 2 12x )  dx y= 6 x 3 3 12 x 2 2 +c y=2 x 3 6 x 2 +c 14=2 ( 2 ) 3 6 ( 2 ) 2 +c, at point P ( 2,14 ) 14=8+c c=6 y=2 x 3 6 x 2 6


(b)
dy dx =6 x 2 12x At turning points,  dy dx =0 6 x 2 12x=0 6x( x2 )=0 x=0x=2 x=0,  y=2 ( 0 ) 3 6 ( 0 ) 2 6=6 x=2,  y=2 ( 2 ) 3 6 ( 2 ) 2 6=14 d 2 y d x 2 =12x12 When x=0 d 2 y d x 2 =12( 0 )12=12 <0 ( 0,6 ) is a maximum point. When x=2 d 2 y d x 2 =12( 2 )12=12 >0 ( 2,14 ) is a minimum point.

3.5 Integration as the Summation of Areas

3.5 Integration as the Summation of Areas

(A) Area of the region between a Curve and the x-axis.



Area of the shaded region;  A = a b y d x


(B) Area of the region between a curve and the y-axis.


Area of the shaded region;  A = a b x d y


(C) Area of the region between a curve and a straight line.


Area of the shaded region;  A = a b f ( x ) d x a b g ( x ) d x

3.2 Integration by Substitution

3.2 Integration by Substitution
It is given that ( a x + b ) n d x , n 1.  


(A) Using the Substitution method,
Let u=ax+b Thus,  du dx =a    dx= du a

Example 1:
( 3x+5 ) 3 dx. Let u=3x+5     du dx =3 dx= du 3 ( 3x+5 ) 3 dx = u 3 du 3    substitute 3x+5=u and dx= du 3 = 1 3 u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c    substitute back  u=3x+5   = ( 3x+5 ) 4 12 +c


(B) Using Formula method

( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Example 2 (Formula method):

  ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Basic Integration

3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

Type 1:

a d x = a x + C Example 2 d x = 2 x + C

Type 2:

a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 2 3 x 5 d x = 2 3 x 5 d x = 2 3 ( x 4 4 ) + C = 2 3 ( x 4 4 ) + C = x 4 6 + C


Type 3:

( u+v )dx= udx± vdx u and v are functions in x Example 1 3 x 2 +2xdx= 3 x 2 dx+ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C


E x a m p l e 2 ( x + 2 ) ( 3 x + 1 ) d x = 3 x 2 + 7 x + 2 d x = 3 x 2 d x + 7 x d x + 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C


E x a m p l e 3 3 x 3 + x 2 x x d x = 3 x 2 + x 1 d x = 3 x 2 d x + x d x 1 d x = 3 x 3 3 + x 2 2 x + C = x 3 + x 2 2 x + C
 

Finding Equation Of A Curve From Its Gradient Function


3.3 Finding Equation of a Curve from its Gradient Function


Example 1:
Find the equation of the curve that has the gradient function  d y d x = 2 x + 8 and passes through the point (2, 3).

Solution:
y = ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C
y = x2 + 8x + C
3 = 22 +8(2) + C  (2, 3)
C = –17
Hence, the equation of the curve is
 y = x2 + 8x – 17



Example 2:
The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve.

Solution:
At the point where a curve has a minimum value,  d y d x = 0
d y d x = 0  
2x – 4 = 0
x = 2

Therefore minimum point = (2, 3).

d y d x = 2 x 4 y = ( 2 x 4 ) d x y = 2 x 2 2 4 x + C y = x 2 4 x + C

When x = 2, y = 3.
3 = 22 – 4(2) + c
c = 7

Hence, the equation of the curve is
y = x2 – 4x + 7

Definite Integrals

3.4a Definite Integral of f(x) from x=a to x=b



Example:
Evaluate each of the following.
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x (b) 0 2 ( 2 x + 1 ) 3 d x

Solution:
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x = [ 3 x 3 3 2 x 2 2 + 5 x ] 1 0 = [ x 3 x 2 + 5 x ] 1 0 = 0 [ ( 1 ) 3 ( 1 ) 2 + 5 ( 1 ) ] = 0 ( 1 1 5 ) = 7 (b) 0 2 ( 2 x + 1 ) 3 d x = [ ( 2 x + 1 ) 4 4 ( 2 ) ] 0 2 = [ ( 2 x + 1 ) 4 8 ] 0 2 = [ ( 2 ( 2 ) + 1 ) 4 8 ] [ ( 2 ( 0 ) + 1 ) 4 8 ] = 625 8 1 8 = 78


Short Question 2 – 4


Question 2:
Given that  Given that 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ,
find the values of m and n.

Solution:
4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 3 3 ( 1 ) + c = m ( 1 + x ) n + c 4 3 ( 1 + x ) 3 + c = m ( 1 + x ) n + c m = 4 3 , n = 3



Question 3:
Given  1 2 2g(x)dx=4 , and  1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m.

Solution:
1 2 [ m x + 3 g ( x ) ] d x = 15 1 2 m x d x + 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] 1 2 + 3 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 m ( 1 ) 2 2 ] + 3 2 1 2 2 g ( x ) d x = 15 2 m 1 2 m + 3 2 ( 4 ) = 15 given 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6



Question 4:
Given d d x ( 2 x 3 x ) = g ( x ) , find 1 2 g ( x ) d x .

Solution:
Given d d x ( 2 x 3 x ) = g ( x ) g ( x ) d x = 2 x 3 x Thus, 1 2 g ( x ) d x = [ 2 x 3 x ] 1 2 = 2 ( 2 ) 3 2 2 ( 1 ) 3 1 = 4 1 = 3