9.6 Gradients of Tangents, Equations of Tangent and Normal

9.6 Gradients of Tangents, Equations of Tangents and Normals



If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of d y d x when x = x1.

(A) Gradient of tangent at A(x1, y1):




(B) Equation of tangent:




(C) Gradient of normal at A(x1, y1):






(D) Equation of normal :  




Example 1 (Find the Equation of Tangent)
Given that y = 4 ( 3 x 1 ) 2 . Find the equation of the tangent at the point (1, 1).

Solution:
y = 4 ( 3 x 1 ) 2 = 4 ( 3 x 1 ) 2 d y d x = 2.4 ( 3 x 1 ) 3 .3 d y d x = 24 ( 3 x 1 ) 3 At point  ( 1 ,  1 ) ,   d y d x = 24 [ 3 ( 1 ) 1 ] 3 = 24 8 = 3 Equation of tangent at point  ( 1 ,  1 )  is, y 1 = 3 ( x 1 ) y 1 = 3 x + 3 y = 3 x + 4


Example 2 (Find the Equation of Normal)
Find the gradient of the curve y = 7 3 x + 4 at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.

Solution:
y = 7 3 x + 4 = 7 ( 3 x + 4 ) 1 d y d x = 7 ( 3 x + 4 ) 2 .3 d y d x = 21 ( 3 x + 4 ) 2 At point  ( 1 ,   7 ) ,   d y d x = 21 [ 3 ( 1 ) + 4 ] 2 = 21 Gradient of the normal  = 1 21 Equation of the normal is y y 1 = m ( x x 1 ) y 7 = 1 21 ( x ( 1 ) ) 21 y 147 = x + 1 21 y x 148 = 0

9.5 First Derivatives of Composite Function


(A) Differentiate Composite Function using Chain Rule


Example:
Differentiate y = (x2– 1)8 .

Solution:



(B) Differentiate Composite Function using Alternative Method
   - Easy Version

Example:
Differentiate y = (x2 – 1)8 .

Solution:
y = ( x 2 1 ) 8 d y d x = 8 ( x 2 1 ) 7 d d x ( x 2 1 ) d y d x = 8 ( x 2 1 ) 7 ( 2 x ) d y d x = 16 x ( x 2 1 ) 7


Practice 1:
Given that  y = 1 3 x 7 ,  find  d y d x

Solution:
y = 1 3 x 7 = ( 3 x 7 ) 1 d y d x = 1 ( 3 x 7 ) 2 .3 d y d x = 3 ( 3 x 7 ) 2


Practice 2:
Given that  y = 2 x 2 5 x + 1 ,  find  d y d x

Solution:
y = 2 x 2 5 x + 1 = ( 2 x 2 5 x + 1 ) 1 2 d y d x = 1 2 ( 2 x 2 5 x + 1 ) 1 2 ( 4 x 5 ) d y d x = 4 x 5 2 2 x 2 5 x + 1

9.4 First Derivatives of the Quotient of Two Polynomials

Find the Derivatives of a Quotient using Quotient Rule

Method 1: The Quotient Rule

Example:

 

Method 2: (Differentiate Directly)

Example:

Given that y = x 2 2 x + 1 , find d y d x  

Solution:

y = x 2 2 x + 1 d y d x = ( 2 x + 1 ) ( 2 x ) x 2 ( 2 ) ( 2 x + 1 ) 2 = 4 x 2 + 2 x 2 x 2 ( 2 x + 1 ) 2 = 2 x 2 + 2 x ( 2 x + 1 ) 2  

 

Practice 1:

  Given that y = 4 x 3 ( 5 x + 1 ) 3 , find d y d x


Solution:

  y = 4 x 3 ( 5 x + 1 ) 3 d y d x = ( 5 x + 1 ) 3 ( 12 x 2 ) 4 x 3 .3 ( 5 x + 1 ) 2 .5 [ ( 5 x + 1 ) 3 ] 2 = ( 5 x + 1 ) 3 ( 12 x 2 ) 60 x 3 ( 5 x + 1 ) 2 ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 [ ( 5 x + 1 ) 5 x ] ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 ( 1 ) ( 5 x + 1 ) 6 = 12 x 2 ( 5 x + 1 ) 4

 

 

 

 

9.4 First Derivatives of the Quotient of Two Polynomials

9.4 Find the Derivatives of a Quotient using Quotient Rule

Method 1

The Quotient Rule

Example:




Method 2 (Differentiate Directly)



Example:
Given that  y = x 2 2 x + 1 ,  find  d y d x

Solution:

y = x 2 2 x + 1 d y d x = ( 2 x + 1 ) ( 2 x ) x 2 ( 2 ) ( 2 x + 1 ) 2  = 4 x 2 + 2 x 2 x 2 ( 2 x + 1 ) 2 = 2 x 2 + 2 x ( 2 x + 1 ) 2



Practice 1:
Given that  y = 4 x 3 ( 5 x + 1 ) 3 ,  find  d y d x

Solution:
y = 4 x 3 ( 5 x + 1 ) 3 d y d x = ( 5 x + 1 ) 3 ( 12 x 2 ) 4 x 3 .3 ( 5 x + 1 ) 2 .5 [ ( 5 x + 1 ) 3 ] 2  = ( 5 x + 1 ) 3 ( 12 x 2 ) 60 x 3 ( 5 x + 1 ) 2 ( 5 x + 1 ) 6  = ( 12 x 2 ) ( 5 x + 1 ) 2 [ ( 5 x + 1 ) 5 x ] ( 5 x + 1 ) 6  = ( 12 x 2 ) ( 5 x + 1 ) 2 ( 1 ) ( 5 x + 1 ) 6  = 12 x 2 ( 5 x + 1 ) 4

Long Questions (Question 4)

Question 4:


In the diagram above, AXB is an arc of a circle centre O and radius 10 cm with ∠AOB = 0.82 radian. AYB is an arc of a circle centre P and radius 5 cm with ∠APB = θ. Calculate:

  1. the length of the chord AB,
  2. the value of θ in radians,
  3. the difference in length between the arcs AYB and AXB.

Solution:

(a)
  1 2 AB=sin0.41×10( Change the calculator to Rad mode ) 1 2 AB=3.99 The length of chord AB=3.99×2=7.98 cm.

(b)
  Let 1 2 θ=α, θ=2α sinα= 3.99 5 α=0.924 rad θ=0.924×2=1.848 radian.

(c)
Using s =
Arcs AXB = 10 × 0.82 = 8.2 cm
Arcs AYB = 5 × 1.848 = 9.24 cm

Difference in length between the arcs AYB and AXB
= 9.24 – 8.2
= 1.04 cm

 

 

 

Long Questions (Question 3)


Question 3:
Diagram below shows a sector QPR with centre P and sector POQ, with centre O.

It is given that OP = 17 cm and PQ = 8.8 cm.
[Use π = 3.142]
Calculate
(a) angle OPQ, in radians,
(b) the perimeter, in cm, of sector QPR,
(c) the area, in cm2, of the shaded region.

Solution:
( a ) OPQ=OQP x+x+30=180    2x=150   x=75 OPQ= 75×3.142 180    =1.3092 radians


( b ) Length of arc QR=rθ    =8.8×1.3092    =11.52 cm Perimeter of sector QPR =11.52+8.8+8.8 =29.12 cm


( c ) 30 o = 30×3.142 180 =0.5237 rad Area of segment PQ = 1 2 r 2 ( θsinθ ) = 1 2 × 17 2 ×( 0.5237sin30 ) = 1 2 ×289×( 0.52370.5 ) =3.4247  cm 2 Area of sector QPR = 1 2 r 2 θ = 1 2 × 8.8 2 ×1.3092 =50.692  cm 2 Area of shaded region =3.4247+50.692 =54.1167  cm 2

Long Questions (Question 2)


Question 2:
Diagram below shows a semicircle PTQ, with centre O and quadrant of a circle RST, with centre R.

[Use π = 3.142]
Calculate
(a) the value of θ, in radians,
(b) the perimeter, in cm, of the whole diagram,
(c) the area, in cm2, of the shaded region.

Solution:
( a ) sinROT= 2.5 5  ROT= 30 o θ= 180 o 30 o = 150 o   =150× π 180   =2.618 rad


( b ) Length of arc PT=rθ    =5×2.618    =13.09 cm Length of arc ST= π 2 ×2.5   =3.9275 cm O R 2 + 2.5 2 = 5 2   O R 2 = 5 2 2.5 2 OR=4.330 Perimeter=13.09+3.9275+2.5+4.330+5    =28.8475 cm


( c ) Area of shaded region =Area of quadrant RSTArea of quadrant RQT Area of quadrant RQT =Area of OQTArea of OTR = 1 2 ( 5 ) 2 ×( 30× π 180 ) 1 2 ( 4.33 )( 2.5 ) =1.1333  cm 2 Area of shaded region =Area of quadrant RSTArea of quadrant RQT = 1 2 ( 2.5 ) 2 ×( 90× π 180 )1.1333 =3.7661  cm 2

Long Questions (Question 1)


Question 1:
Diagram shows a circle, centre O and radius 8 cm inscribed in a sector SPT of a circle at centre P.  The straight lines, SP and TP, are tangents to the circle at point Q and point R, respectively.

[Use p= 3.142]
Calculate
(a) the length, in cm, of the arc ST,
(b) the area, in cm2, of the shaded region.


Solution:
(a)
For triangle  O P Q sin 30 = 8 O P O P = 8 sin 30 = 16  cm Radius of sector  S P T = 16 + 8 = 24  cm S P T = 60 × 3.142 180 = 1.047  radian Length of arc  S T = 24 × 1.047 = 25.14  cm


(b)
For triangle  O P Q : tan 30 = 8 Q P P Q = 8 tan 30 = 13.86  cm Q O R = 2 ( 60 ) = 120 Reflex angle  Q O R = 360 120 = 240 240 = 3.142 180 × 240 = 4.189  radian Area of shaded region = (   Area of  sector  S P T ) ( Area of major    sector  O Q R ) ( Area of triangle  O P Q  and  O P R ) = 1 2 ( 24 ) 2 ( 1.047 ) 1 2 ( 8 ) 2 ( 4.189 ) 2 ( 1 2 × 8 × 13.86 ) = 301.54 134.05 110.88 = 56.61  cm 2

Short Questions (Question 3 & 4)


Question 3:
Diagram below shows a circle with centre O.
The length of the minor arc is 16 cm and the angle of the major sector AOB is 290o.
Using  π = 3.142, find
(a) the value of  θ, in radians. (Give your answer correct to four significant figures)
(b) the length, in cm, of the radius of the circle.

Solution:
(a) 
Angle of the minor sector AOB
= 360o 290o
= 70o
= 70o × 3.142 180
= 1.222 radians

(b) 
Using s =
r × 1.222 = 16
radius, r = 13.09 cm


Question 4:
Diagram below shows sector OPQ with centre and sector PXY with centre P.
Given that OQ = 8 cm, PY = 3 cm ,  ∠ XPY = 1.2 radians and the length of arc PQ = 6cm ,
calculate
( a)  the value of θ , in  radian ,
( b)  the area, in cm2 , of the shaded region .

Solution:
(a) s = θ
 6 = 8 θ
 θ = 0.75 rad

(b) 
Area of the shaded region
= Area of sector OPQ – Area of sector PXY
= 1 2 ( 8 ) 2 ( 0.75 ) 1 2 ( 3 ) 2 ( 1.2 )
= 24 – 5.4
= 18.6 cm2